Probing the hydrothermal system of the Chicxulub impact crater
The Chicxulub impact event generated a long-duration hydrothermal system suitable for microbial life. The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. Internation...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-05, Vol.6 (22), p.eaaz3053-eaaz3053 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaaz3053 |
---|---|
container_issue | 22 |
container_start_page | eaaz3053 |
container_title | Science advances |
container_volume | 6 |
creator | Kring, David A. Tikoo, Sonia M. Schmieder, Martin Riller, Ulrich Rebolledo-Vieyra, Mario Simpson, Sarah L. Osinski, Gordon R. Gattacceca, Jérôme Wittmann, Axel Verhagen, Christina M. Cockell, Charles S. Coolen, Marco J. L. Longstaffe, Fred J. Gulick, Sean P. S. Morgan, Joanna V. Bralower, Timothy J. Chenot, Elise Christeson, Gail L. Claeys, Philippe Ferrière, Ludovic Gebhardt, Catalina Goto, Kazuhisa Green, Sophie L. Jones, Heather Lofi, Johanna Lowery, Christopher M. Ocampo-Torres, Rubén Perez-Cruz, Ligia Pickersgill, Annemarie E. Poelchau, Michael H. Rae, Auriol S. P. Rasmussen, Cornelia Sato, Honami Smit, Jan Tomioka, Naotaka Urrutia-Fucugauchi, Jaime Whalen, Michael T. Xiao, Long Yamaguchi, Kosei E. |
description | The Chicxulub impact event generated a long-duration hydrothermal system suitable for microbial life.
The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 10
5
km
3
of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 10
6
years. |
doi_str_mv | 10.1126/sciadv.aaz3053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7259942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412213146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-613e10b025b5417d1fbf59b7b7d1b8ea817c58c9bec04748892ffb393dae2b663</originalsourceid><addsrcrecordid>eNpdkb1PwzAQxS0Eoqh0Zc4IQ4q_nSyVqgooUiUYYLZsx2mMkrrYSUX560lJhYDpnu7e_U66B8AVglOEML-NxqliN1Xqk0BGTsAFJoKlmNHs9JcegUmMbxBCRDlnKD8HI4IZJnnGL8DsOXjtNuukrWxS7YvgexEaVSdxH1vbJL78Hi0qZz66utOJa7bKtIkJqrXhEpyVqo52cqxj8Hp_97JYpqunh8fFfJUaykWbckQsghpiphlFokClLlmuhe6lzqzKkDAsM7m2BlJBsyzHZalJTgplseacjMFs4G473djC2E0bVC23wTUq7KVXTv6dbFwl134nBWZ5TnEPuBkA1b-15XwlDz2IMwEZ5jvUe6-Px4J_72xsZeOisXWtNtZ3UWKKMEakf2dvnQ5WE3yMwZY_bATlISM5ZCSPGZEv4yiFbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412213146</pqid></control><display><type>article</type><title>Probing the hydrothermal system of the Chicxulub impact crater</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kring, David A. ; Tikoo, Sonia M. ; Schmieder, Martin ; Riller, Ulrich ; Rebolledo-Vieyra, Mario ; Simpson, Sarah L. ; Osinski, Gordon R. ; Gattacceca, Jérôme ; Wittmann, Axel ; Verhagen, Christina M. ; Cockell, Charles S. ; Coolen, Marco J. L. ; Longstaffe, Fred J. ; Gulick, Sean P. S. ; Morgan, Joanna V. ; Bralower, Timothy J. ; Chenot, Elise ; Christeson, Gail L. ; Claeys, Philippe ; Ferrière, Ludovic ; Gebhardt, Catalina ; Goto, Kazuhisa ; Green, Sophie L. ; Jones, Heather ; Lofi, Johanna ; Lowery, Christopher M. ; Ocampo-Torres, Rubén ; Perez-Cruz, Ligia ; Pickersgill, Annemarie E. ; Poelchau, Michael H. ; Rae, Auriol S. P. ; Rasmussen, Cornelia ; Sato, Honami ; Smit, Jan ; Tomioka, Naotaka ; Urrutia-Fucugauchi, Jaime ; Whalen, Michael T. ; Xiao, Long ; Yamaguchi, Kosei E.</creator><creatorcontrib>Kring, David A. ; Tikoo, Sonia M. ; Schmieder, Martin ; Riller, Ulrich ; Rebolledo-Vieyra, Mario ; Simpson, Sarah L. ; Osinski, Gordon R. ; Gattacceca, Jérôme ; Wittmann, Axel ; Verhagen, Christina M. ; Cockell, Charles S. ; Coolen, Marco J. L. ; Longstaffe, Fred J. ; Gulick, Sean P. S. ; Morgan, Joanna V. ; Bralower, Timothy J. ; Chenot, Elise ; Christeson, Gail L. ; Claeys, Philippe ; Ferrière, Ludovic ; Gebhardt, Catalina ; Goto, Kazuhisa ; Green, Sophie L. ; Jones, Heather ; Lofi, Johanna ; Lowery, Christopher M. ; Ocampo-Torres, Rubén ; Perez-Cruz, Ligia ; Pickersgill, Annemarie E. ; Poelchau, Michael H. ; Rae, Auriol S. P. ; Rasmussen, Cornelia ; Sato, Honami ; Smit, Jan ; Tomioka, Naotaka ; Urrutia-Fucugauchi, Jaime ; Whalen, Michael T. ; Xiao, Long ; Yamaguchi, Kosei E.</creatorcontrib><description>The Chicxulub impact event generated a long-duration hydrothermal system suitable for microbial life.
The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 10
5
km
3
of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 10
6
years.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz3053</identifier><identifier>PMID: 32523986</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Earth Sciences ; Geology ; Planetary Science ; Planetology ; SciAdv r-articles ; Sciences of the Universe</subject><ispartof>Science advances, 2020-05, Vol.6 (22), p.eaaz3053-eaaz3053</ispartof><rights>Attribution - NonCommercial</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-613e10b025b5417d1fbf59b7b7d1b8ea817c58c9bec04748892ffb393dae2b663</citedby><cites>FETCH-LOGICAL-c467t-613e10b025b5417d1fbf59b7b7d1b8ea817c58c9bec04748892ffb393dae2b663</cites><orcidid>0000-0002-4749-4429 ; 0000-0002-6844-7023 ; 0000-0002-5271-8554 ; 0000-0003-0556-7471 ; 0000-0002-0602-595X ; 0000-0002-9082-6230 ; 0000-0002-3227-0676 ; 0000-0002-0101-4397 ; 0000-0003-3420-4135 ; 0000-0001-7572-0801 ; 0000-0002-3503-859X ; 0000-0002-1002-6453 ; 0000-0002-1639-7140 ; 0000-0002-6070-4865 ; 0000-0002-1458-5148 ; 0000-0001-5452-2849 ; 0000-0002-7468-0454 ; 0000-0002-4377-7018 ; 0000-0003-2590-5239 ; 0000-0001-8728-6918 ; 0000-0002-7304-2821 ; 0000-0002-1832-5925 ; 0000-0002-3440-6282 ; 0000-0001-9524-8284 ; 0000-0003-3628-890X ; 0000-0003-4740-9068 ; 0000-0001-5725-9513 ; 0000-0002-0417-920X ; 0000-0002-4585-7687 ; 0000-0002-3832-2959 ; 0000-0003-4103-4808 ; 0000-0001-6256-5945 ; 0000-0002-3803-6792 ; 0000-0003-2933-9473 ; 0000-0003-3107-8954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02870526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kring, David A.</creatorcontrib><creatorcontrib>Tikoo, Sonia M.</creatorcontrib><creatorcontrib>Schmieder, Martin</creatorcontrib><creatorcontrib>Riller, Ulrich</creatorcontrib><creatorcontrib>Rebolledo-Vieyra, Mario</creatorcontrib><creatorcontrib>Simpson, Sarah L.</creatorcontrib><creatorcontrib>Osinski, Gordon R.</creatorcontrib><creatorcontrib>Gattacceca, Jérôme</creatorcontrib><creatorcontrib>Wittmann, Axel</creatorcontrib><creatorcontrib>Verhagen, Christina M.</creatorcontrib><creatorcontrib>Cockell, Charles S.</creatorcontrib><creatorcontrib>Coolen, Marco J. L.</creatorcontrib><creatorcontrib>Longstaffe, Fred J.</creatorcontrib><creatorcontrib>Gulick, Sean P. S.</creatorcontrib><creatorcontrib>Morgan, Joanna V.</creatorcontrib><creatorcontrib>Bralower, Timothy J.</creatorcontrib><creatorcontrib>Chenot, Elise</creatorcontrib><creatorcontrib>Christeson, Gail L.</creatorcontrib><creatorcontrib>Claeys, Philippe</creatorcontrib><creatorcontrib>Ferrière, Ludovic</creatorcontrib><creatorcontrib>Gebhardt, Catalina</creatorcontrib><creatorcontrib>Goto, Kazuhisa</creatorcontrib><creatorcontrib>Green, Sophie L.</creatorcontrib><creatorcontrib>Jones, Heather</creatorcontrib><creatorcontrib>Lofi, Johanna</creatorcontrib><creatorcontrib>Lowery, Christopher M.</creatorcontrib><creatorcontrib>Ocampo-Torres, Rubén</creatorcontrib><creatorcontrib>Perez-Cruz, Ligia</creatorcontrib><creatorcontrib>Pickersgill, Annemarie E.</creatorcontrib><creatorcontrib>Poelchau, Michael H.</creatorcontrib><creatorcontrib>Rae, Auriol S. P.</creatorcontrib><creatorcontrib>Rasmussen, Cornelia</creatorcontrib><creatorcontrib>Sato, Honami</creatorcontrib><creatorcontrib>Smit, Jan</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Urrutia-Fucugauchi, Jaime</creatorcontrib><creatorcontrib>Whalen, Michael T.</creatorcontrib><creatorcontrib>Xiao, Long</creatorcontrib><creatorcontrib>Yamaguchi, Kosei E.</creatorcontrib><title>Probing the hydrothermal system of the Chicxulub impact crater</title><title>Science advances</title><description>The Chicxulub impact event generated a long-duration hydrothermal system suitable for microbial life.
The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 10
5
km
3
of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 10
6
years.</description><subject>Earth Sciences</subject><subject>Geology</subject><subject>Planetary Science</subject><subject>Planetology</subject><subject>SciAdv r-articles</subject><subject>Sciences of the Universe</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PwzAQxS0Eoqh0Zc4IQ4q_nSyVqgooUiUYYLZsx2mMkrrYSUX560lJhYDpnu7e_U66B8AVglOEML-NxqliN1Xqk0BGTsAFJoKlmNHs9JcegUmMbxBCRDlnKD8HI4IZJnnGL8DsOXjtNuukrWxS7YvgexEaVSdxH1vbJL78Hi0qZz66utOJa7bKtIkJqrXhEpyVqo52cqxj8Hp_97JYpqunh8fFfJUaykWbckQsghpiphlFokClLlmuhe6lzqzKkDAsM7m2BlJBsyzHZalJTgplseacjMFs4G473djC2E0bVC23wTUq7KVXTv6dbFwl134nBWZ5TnEPuBkA1b-15XwlDz2IMwEZ5jvUe6-Px4J_72xsZeOisXWtNtZ3UWKKMEakf2dvnQ5WE3yMwZY_bATlISM5ZCSPGZEv4yiFbA</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Kring, David A.</creator><creator>Tikoo, Sonia M.</creator><creator>Schmieder, Martin</creator><creator>Riller, Ulrich</creator><creator>Rebolledo-Vieyra, Mario</creator><creator>Simpson, Sarah L.</creator><creator>Osinski, Gordon R.</creator><creator>Gattacceca, Jérôme</creator><creator>Wittmann, Axel</creator><creator>Verhagen, Christina M.</creator><creator>Cockell, Charles S.</creator><creator>Coolen, Marco J. L.</creator><creator>Longstaffe, Fred J.</creator><creator>Gulick, Sean P. S.</creator><creator>Morgan, Joanna V.</creator><creator>Bralower, Timothy J.</creator><creator>Chenot, Elise</creator><creator>Christeson, Gail L.</creator><creator>Claeys, Philippe</creator><creator>Ferrière, Ludovic</creator><creator>Gebhardt, Catalina</creator><creator>Goto, Kazuhisa</creator><creator>Green, Sophie L.</creator><creator>Jones, Heather</creator><creator>Lofi, Johanna</creator><creator>Lowery, Christopher M.</creator><creator>Ocampo-Torres, Rubén</creator><creator>Perez-Cruz, Ligia</creator><creator>Pickersgill, Annemarie E.</creator><creator>Poelchau, Michael H.</creator><creator>Rae, Auriol S. P.</creator><creator>Rasmussen, Cornelia</creator><creator>Sato, Honami</creator><creator>Smit, Jan</creator><creator>Tomioka, Naotaka</creator><creator>Urrutia-Fucugauchi, Jaime</creator><creator>Whalen, Michael T.</creator><creator>Xiao, Long</creator><creator>Yamaguchi, Kosei E.</creator><general>American Association for the Advancement of Science (AAAS)</general><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4749-4429</orcidid><orcidid>https://orcid.org/0000-0002-6844-7023</orcidid><orcidid>https://orcid.org/0000-0002-5271-8554</orcidid><orcidid>https://orcid.org/0000-0003-0556-7471</orcidid><orcidid>https://orcid.org/0000-0002-0602-595X</orcidid><orcidid>https://orcid.org/0000-0002-9082-6230</orcidid><orcidid>https://orcid.org/0000-0002-3227-0676</orcidid><orcidid>https://orcid.org/0000-0002-0101-4397</orcidid><orcidid>https://orcid.org/0000-0003-3420-4135</orcidid><orcidid>https://orcid.org/0000-0001-7572-0801</orcidid><orcidid>https://orcid.org/0000-0002-3503-859X</orcidid><orcidid>https://orcid.org/0000-0002-1002-6453</orcidid><orcidid>https://orcid.org/0000-0002-1639-7140</orcidid><orcidid>https://orcid.org/0000-0002-6070-4865</orcidid><orcidid>https://orcid.org/0000-0002-1458-5148</orcidid><orcidid>https://orcid.org/0000-0001-5452-2849</orcidid><orcidid>https://orcid.org/0000-0002-7468-0454</orcidid><orcidid>https://orcid.org/0000-0002-4377-7018</orcidid><orcidid>https://orcid.org/0000-0003-2590-5239</orcidid><orcidid>https://orcid.org/0000-0001-8728-6918</orcidid><orcidid>https://orcid.org/0000-0002-7304-2821</orcidid><orcidid>https://orcid.org/0000-0002-1832-5925</orcidid><orcidid>https://orcid.org/0000-0002-3440-6282</orcidid><orcidid>https://orcid.org/0000-0001-9524-8284</orcidid><orcidid>https://orcid.org/0000-0003-3628-890X</orcidid><orcidid>https://orcid.org/0000-0003-4740-9068</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0002-0417-920X</orcidid><orcidid>https://orcid.org/0000-0002-4585-7687</orcidid><orcidid>https://orcid.org/0000-0002-3832-2959</orcidid><orcidid>https://orcid.org/0000-0003-4103-4808</orcidid><orcidid>https://orcid.org/0000-0001-6256-5945</orcidid><orcidid>https://orcid.org/0000-0002-3803-6792</orcidid><orcidid>https://orcid.org/0000-0003-2933-9473</orcidid><orcidid>https://orcid.org/0000-0003-3107-8954</orcidid></search><sort><creationdate>20200529</creationdate><title>Probing the hydrothermal system of the Chicxulub impact crater</title><author>Kring, David A. ; Tikoo, Sonia M. ; Schmieder, Martin ; Riller, Ulrich ; Rebolledo-Vieyra, Mario ; Simpson, Sarah L. ; Osinski, Gordon R. ; Gattacceca, Jérôme ; Wittmann, Axel ; Verhagen, Christina M. ; Cockell, Charles S. ; Coolen, Marco J. L. ; Longstaffe, Fred J. ; Gulick, Sean P. S. ; Morgan, Joanna V. ; Bralower, Timothy J. ; Chenot, Elise ; Christeson, Gail L. ; Claeys, Philippe ; Ferrière, Ludovic ; Gebhardt, Catalina ; Goto, Kazuhisa ; Green, Sophie L. ; Jones, Heather ; Lofi, Johanna ; Lowery, Christopher M. ; Ocampo-Torres, Rubén ; Perez-Cruz, Ligia ; Pickersgill, Annemarie E. ; Poelchau, Michael H. ; Rae, Auriol S. P. ; Rasmussen, Cornelia ; Sato, Honami ; Smit, Jan ; Tomioka, Naotaka ; Urrutia-Fucugauchi, Jaime ; Whalen, Michael T. ; Xiao, Long ; Yamaguchi, Kosei E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-613e10b025b5417d1fbf59b7b7d1b8ea817c58c9bec04748892ffb393dae2b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Earth Sciences</topic><topic>Geology</topic><topic>Planetary Science</topic><topic>Planetology</topic><topic>SciAdv r-articles</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kring, David A.</creatorcontrib><creatorcontrib>Tikoo, Sonia M.</creatorcontrib><creatorcontrib>Schmieder, Martin</creatorcontrib><creatorcontrib>Riller, Ulrich</creatorcontrib><creatorcontrib>Rebolledo-Vieyra, Mario</creatorcontrib><creatorcontrib>Simpson, Sarah L.</creatorcontrib><creatorcontrib>Osinski, Gordon R.</creatorcontrib><creatorcontrib>Gattacceca, Jérôme</creatorcontrib><creatorcontrib>Wittmann, Axel</creatorcontrib><creatorcontrib>Verhagen, Christina M.</creatorcontrib><creatorcontrib>Cockell, Charles S.</creatorcontrib><creatorcontrib>Coolen, Marco J. L.</creatorcontrib><creatorcontrib>Longstaffe, Fred J.</creatorcontrib><creatorcontrib>Gulick, Sean P. S.</creatorcontrib><creatorcontrib>Morgan, Joanna V.</creatorcontrib><creatorcontrib>Bralower, Timothy J.</creatorcontrib><creatorcontrib>Chenot, Elise</creatorcontrib><creatorcontrib>Christeson, Gail L.</creatorcontrib><creatorcontrib>Claeys, Philippe</creatorcontrib><creatorcontrib>Ferrière, Ludovic</creatorcontrib><creatorcontrib>Gebhardt, Catalina</creatorcontrib><creatorcontrib>Goto, Kazuhisa</creatorcontrib><creatorcontrib>Green, Sophie L.</creatorcontrib><creatorcontrib>Jones, Heather</creatorcontrib><creatorcontrib>Lofi, Johanna</creatorcontrib><creatorcontrib>Lowery, Christopher M.</creatorcontrib><creatorcontrib>Ocampo-Torres, Rubén</creatorcontrib><creatorcontrib>Perez-Cruz, Ligia</creatorcontrib><creatorcontrib>Pickersgill, Annemarie E.</creatorcontrib><creatorcontrib>Poelchau, Michael H.</creatorcontrib><creatorcontrib>Rae, Auriol S. P.</creatorcontrib><creatorcontrib>Rasmussen, Cornelia</creatorcontrib><creatorcontrib>Sato, Honami</creatorcontrib><creatorcontrib>Smit, Jan</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Urrutia-Fucugauchi, Jaime</creatorcontrib><creatorcontrib>Whalen, Michael T.</creatorcontrib><creatorcontrib>Xiao, Long</creatorcontrib><creatorcontrib>Yamaguchi, Kosei E.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kring, David A.</au><au>Tikoo, Sonia M.</au><au>Schmieder, Martin</au><au>Riller, Ulrich</au><au>Rebolledo-Vieyra, Mario</au><au>Simpson, Sarah L.</au><au>Osinski, Gordon R.</au><au>Gattacceca, Jérôme</au><au>Wittmann, Axel</au><au>Verhagen, Christina M.</au><au>Cockell, Charles S.</au><au>Coolen, Marco J. L.</au><au>Longstaffe, Fred J.</au><au>Gulick, Sean P. S.</au><au>Morgan, Joanna V.</au><au>Bralower, Timothy J.</au><au>Chenot, Elise</au><au>Christeson, Gail L.</au><au>Claeys, Philippe</au><au>Ferrière, Ludovic</au><au>Gebhardt, Catalina</au><au>Goto, Kazuhisa</au><au>Green, Sophie L.</au><au>Jones, Heather</au><au>Lofi, Johanna</au><au>Lowery, Christopher M.</au><au>Ocampo-Torres, Rubén</au><au>Perez-Cruz, Ligia</au><au>Pickersgill, Annemarie E.</au><au>Poelchau, Michael H.</au><au>Rae, Auriol S. P.</au><au>Rasmussen, Cornelia</au><au>Sato, Honami</au><au>Smit, Jan</au><au>Tomioka, Naotaka</au><au>Urrutia-Fucugauchi, Jaime</au><au>Whalen, Michael T.</au><au>Xiao, Long</au><au>Yamaguchi, Kosei E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the hydrothermal system of the Chicxulub impact crater</atitle><jtitle>Science advances</jtitle><date>2020-05-29</date><risdate>2020</risdate><volume>6</volume><issue>22</issue><spage>eaaz3053</spage><epage>eaaz3053</epage><pages>eaaz3053-eaaz3053</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The Chicxulub impact event generated a long-duration hydrothermal system suitable for microbial life.
The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 10
5
km
3
of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 10
6
years.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>32523986</pmid><doi>10.1126/sciadv.aaz3053</doi><orcidid>https://orcid.org/0000-0002-4749-4429</orcidid><orcidid>https://orcid.org/0000-0002-6844-7023</orcidid><orcidid>https://orcid.org/0000-0002-5271-8554</orcidid><orcidid>https://orcid.org/0000-0003-0556-7471</orcidid><orcidid>https://orcid.org/0000-0002-0602-595X</orcidid><orcidid>https://orcid.org/0000-0002-9082-6230</orcidid><orcidid>https://orcid.org/0000-0002-3227-0676</orcidid><orcidid>https://orcid.org/0000-0002-0101-4397</orcidid><orcidid>https://orcid.org/0000-0003-3420-4135</orcidid><orcidid>https://orcid.org/0000-0001-7572-0801</orcidid><orcidid>https://orcid.org/0000-0002-3503-859X</orcidid><orcidid>https://orcid.org/0000-0002-1002-6453</orcidid><orcidid>https://orcid.org/0000-0002-1639-7140</orcidid><orcidid>https://orcid.org/0000-0002-6070-4865</orcidid><orcidid>https://orcid.org/0000-0002-1458-5148</orcidid><orcidid>https://orcid.org/0000-0001-5452-2849</orcidid><orcidid>https://orcid.org/0000-0002-7468-0454</orcidid><orcidid>https://orcid.org/0000-0002-4377-7018</orcidid><orcidid>https://orcid.org/0000-0003-2590-5239</orcidid><orcidid>https://orcid.org/0000-0001-8728-6918</orcidid><orcidid>https://orcid.org/0000-0002-7304-2821</orcidid><orcidid>https://orcid.org/0000-0002-1832-5925</orcidid><orcidid>https://orcid.org/0000-0002-3440-6282</orcidid><orcidid>https://orcid.org/0000-0001-9524-8284</orcidid><orcidid>https://orcid.org/0000-0003-3628-890X</orcidid><orcidid>https://orcid.org/0000-0003-4740-9068</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0002-0417-920X</orcidid><orcidid>https://orcid.org/0000-0002-4585-7687</orcidid><orcidid>https://orcid.org/0000-0002-3832-2959</orcidid><orcidid>https://orcid.org/0000-0003-4103-4808</orcidid><orcidid>https://orcid.org/0000-0001-6256-5945</orcidid><orcidid>https://orcid.org/0000-0002-3803-6792</orcidid><orcidid>https://orcid.org/0000-0003-2933-9473</orcidid><orcidid>https://orcid.org/0000-0003-3107-8954</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-05, Vol.6 (22), p.eaaz3053-eaaz3053 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7259942 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Earth Sciences Geology Planetary Science Planetology SciAdv r-articles Sciences of the Universe |
title | Probing the hydrothermal system of the Chicxulub impact crater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20hydrothermal%20system%20of%20the%20Chicxulub%20impact%20crater&rft.jtitle=Science%20advances&rft.au=Kring,%20David%20A.&rft.date=2020-05-29&rft.volume=6&rft.issue=22&rft.spage=eaaz3053&rft.epage=eaaz3053&rft.pages=eaaz3053-eaaz3053&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz3053&rft_dat=%3Cproquest_pubme%3E2412213146%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412213146&rft_id=info:pmid/32523986&rfr_iscdi=true |