Renal Effects of Sodium-Glucose Co-Transporter Inhibitors

Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of cardiology 2019-12, Vol.124 (Suppl 1), p.S28-S35
Hauptverfasser: Thomson, Scott C., Vallon, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S35
container_issue Suppl 1
container_start_page S28
container_title The American journal of cardiology
container_volume 124
creator Thomson, Scott C.
Vallon, Volker
description Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.
doi_str_mv 10.1016/j.amjcard.2019.10.027
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7258222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002914919311774</els_id><sourcerecordid>2314516692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-fabec2066b9bc6b81fe22e3b8a117a30c43ecd7ca3a01ce8db2560c5bea836413</originalsourceid><addsrcrecordid>eNqFkNtOwzAMhiMEYuPwCKBKXHfESZu2NyA0cZg0CYnDdZSkLku1NSNpkXh7Mm0guOLKsv37t_0RcgZ0AhTEZTtRq9YoX08YhSrWJpQVe2QMZVGlUAHfJ2NKKUsryKoROQqhjSlALg7JiEORQcaLMamesFPL5LZp0PQhcU3y7Go7rNL75WBcwGTq0hevurB2vkefzLqF1bZ3PpyQg0YtA57u4jF5vbt9mT6k88f72fRmnppcQJ82SqNhVAhdaSN0CQ0yhlyXCqBQnJqMo6kLo7iiYLCsNcsFNblGVXKRAT8mV1vf9aBXWBvseq-Wcu3tSvlP6ZSVfzudXcg39yELlpeMsWhwsTPw7n3A0MvWDT5-HSTjkOUgRLVR5VuV8S4Ej83PBqByQ1y2ckdcbohvypF4nDv_fd7P1DfiKLjeCjBC-rDoZTAWO4O19ZG5rJ39Z8UX5QqVhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314516692</pqid></control><display><type>article</type><title>Renal Effects of Sodium-Glucose Co-Transporter Inhibitors</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Thomson, Scott C. ; Vallon, Volker</creator><creatorcontrib>Thomson, Scott C. ; Vallon, Volker</creatorcontrib><description>Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.</description><identifier>ISSN: 0002-9149</identifier><identifier>EISSN: 1879-1913</identifier><identifier>DOI: 10.1016/j.amjcard.2019.10.027</identifier><identifier>PMID: 31741437</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Angiotensin ; Angiotensin-converting enzyme inhibitors ; Cardiovascular disease ; Clinical medicine ; Clinical trials ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Diabetic kidney disease ; Disease Progression ; Drugs ; Energy ; Enzyme inhibitors ; Glomerular filtration ; Glomerular filtration rate ; Glomerular Filtration Rate - drug effects ; Glomerular Filtration Rate - physiology ; Glucose ; Glucose transporter ; Hemodynamics ; Humans ; Hyperfiltration ; Kidney - drug effects ; Kidney diseases ; Kidney Tubules - drug effects ; Kidney Tubules - metabolism ; Kidney Tubules, Distal - drug effects ; Kidney Tubules, Distal - metabolism ; Kidney Tubules, Proximal - drug effects ; Kidney Tubules, Proximal - metabolism ; Kidneys ; Long-term effects ; Metabolism ; Na+/H+-exchanging ATPase ; Nitric oxide ; Nitric Oxide Synthase - metabolism ; Nitric-oxide synthase ; Peptidyl-dipeptidase A ; Proximal tubule ; Reabsorption ; Renal Circulation - drug effects ; Renal Circulation - physiology ; Renal Insufficiency, Chronic - complications ; Renal Insufficiency, Chronic - metabolism ; Sodium ; Sodium-Glucose Transporter 1 - metabolism ; Sodium-Glucose Transporter 2 - metabolism ; Sodium-Glucose Transporter 2 Inhibitors - pharmacology ; Sodium-Glucose Transporter 2 Inhibitors - therapeutic use ; Sodium-Hydrogen Exchanger 3 - metabolism ; Theory ; Tubuloglomerular feedback ; Urine</subject><ispartof>The American journal of cardiology, 2019-12, Vol.124 (Suppl 1), p.S28-S35</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-fabec2066b9bc6b81fe22e3b8a117a30c43ecd7ca3a01ce8db2560c5bea836413</citedby><cites>FETCH-LOGICAL-c561t-fabec2066b9bc6b81fe22e3b8a117a30c43ecd7ca3a01ce8db2560c5bea836413</cites><orcidid>0000-0001-8853-0505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2314516692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31741437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomson, Scott C.</creatorcontrib><creatorcontrib>Vallon, Volker</creatorcontrib><title>Renal Effects of Sodium-Glucose Co-Transporter Inhibitors</title><title>The American journal of cardiology</title><addtitle>Am J Cardiol</addtitle><description>Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.</description><subject>Angiotensin</subject><subject>Angiotensin-converting enzyme inhibitors</subject><subject>Cardiovascular disease</subject><subject>Clinical medicine</subject><subject>Clinical trials</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetic kidney disease</subject><subject>Disease Progression</subject><subject>Drugs</subject><subject>Energy</subject><subject>Enzyme inhibitors</subject><subject>Glomerular filtration</subject><subject>Glomerular filtration rate</subject><subject>Glomerular Filtration Rate - drug effects</subject><subject>Glomerular Filtration Rate - physiology</subject><subject>Glucose</subject><subject>Glucose transporter</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Hyperfiltration</subject><subject>Kidney - drug effects</subject><subject>Kidney diseases</subject><subject>Kidney Tubules - drug effects</subject><subject>Kidney Tubules - metabolism</subject><subject>Kidney Tubules, Distal - drug effects</subject><subject>Kidney Tubules, Distal - metabolism</subject><subject>Kidney Tubules, Proximal - drug effects</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Kidneys</subject><subject>Long-term effects</subject><subject>Metabolism</subject><subject>Na+/H+-exchanging ATPase</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric-oxide synthase</subject><subject>Peptidyl-dipeptidase A</subject><subject>Proximal tubule</subject><subject>Reabsorption</subject><subject>Renal Circulation - drug effects</subject><subject>Renal Circulation - physiology</subject><subject>Renal Insufficiency, Chronic - complications</subject><subject>Renal Insufficiency, Chronic - metabolism</subject><subject>Sodium</subject><subject>Sodium-Glucose Transporter 1 - metabolism</subject><subject>Sodium-Glucose Transporter 2 - metabolism</subject><subject>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</subject><subject>Sodium-Glucose Transporter 2 Inhibitors - therapeutic use</subject><subject>Sodium-Hydrogen Exchanger 3 - metabolism</subject><subject>Theory</subject><subject>Tubuloglomerular feedback</subject><subject>Urine</subject><issn>0002-9149</issn><issn>1879-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkNtOwzAMhiMEYuPwCKBKXHfESZu2NyA0cZg0CYnDdZSkLku1NSNpkXh7Mm0guOLKsv37t_0RcgZ0AhTEZTtRq9YoX08YhSrWJpQVe2QMZVGlUAHfJ2NKKUsryKoROQqhjSlALg7JiEORQcaLMamesFPL5LZp0PQhcU3y7Go7rNL75WBcwGTq0hevurB2vkefzLqF1bZ3PpyQg0YtA57u4jF5vbt9mT6k88f72fRmnppcQJ82SqNhVAhdaSN0CQ0yhlyXCqBQnJqMo6kLo7iiYLCsNcsFNblGVXKRAT8mV1vf9aBXWBvseq-Wcu3tSvlP6ZSVfzudXcg39yELlpeMsWhwsTPw7n3A0MvWDT5-HSTjkOUgRLVR5VuV8S4Ej83PBqByQ1y2ckdcbohvypF4nDv_fd7P1DfiKLjeCjBC-rDoZTAWO4O19ZG5rJ39Z8UX5QqVhQ</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Thomson, Scott C.</creator><creator>Vallon, Volker</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8853-0505</orcidid></search><sort><creationdate>20191215</creationdate><title>Renal Effects of Sodium-Glucose Co-Transporter Inhibitors</title><author>Thomson, Scott C. ; Vallon, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-fabec2066b9bc6b81fe22e3b8a117a30c43ecd7ca3a01ce8db2560c5bea836413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angiotensin</topic><topic>Angiotensin-converting enzyme inhibitors</topic><topic>Cardiovascular disease</topic><topic>Clinical medicine</topic><topic>Clinical trials</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetic kidney disease</topic><topic>Disease Progression</topic><topic>Drugs</topic><topic>Energy</topic><topic>Enzyme inhibitors</topic><topic>Glomerular filtration</topic><topic>Glomerular filtration rate</topic><topic>Glomerular Filtration Rate - drug effects</topic><topic>Glomerular Filtration Rate - physiology</topic><topic>Glucose</topic><topic>Glucose transporter</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Hyperfiltration</topic><topic>Kidney - drug effects</topic><topic>Kidney diseases</topic><topic>Kidney Tubules - drug effects</topic><topic>Kidney Tubules - metabolism</topic><topic>Kidney Tubules, Distal - drug effects</topic><topic>Kidney Tubules, Distal - metabolism</topic><topic>Kidney Tubules, Proximal - drug effects</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Kidneys</topic><topic>Long-term effects</topic><topic>Metabolism</topic><topic>Na+/H+-exchanging ATPase</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric-oxide synthase</topic><topic>Peptidyl-dipeptidase A</topic><topic>Proximal tubule</topic><topic>Reabsorption</topic><topic>Renal Circulation - drug effects</topic><topic>Renal Circulation - physiology</topic><topic>Renal Insufficiency, Chronic - complications</topic><topic>Renal Insufficiency, Chronic - metabolism</topic><topic>Sodium</topic><topic>Sodium-Glucose Transporter 1 - metabolism</topic><topic>Sodium-Glucose Transporter 2 - metabolism</topic><topic>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</topic><topic>Sodium-Glucose Transporter 2 Inhibitors - therapeutic use</topic><topic>Sodium-Hydrogen Exchanger 3 - metabolism</topic><topic>Theory</topic><topic>Tubuloglomerular feedback</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomson, Scott C.</creatorcontrib><creatorcontrib>Vallon, Volker</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The American journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomson, Scott C.</au><au>Vallon, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renal Effects of Sodium-Glucose Co-Transporter Inhibitors</atitle><jtitle>The American journal of cardiology</jtitle><addtitle>Am J Cardiol</addtitle><date>2019-12-15</date><risdate>2019</risdate><volume>124</volume><issue>Suppl 1</issue><spage>S28</spage><epage>S35</epage><pages>S28-S35</pages><issn>0002-9149</issn><eissn>1879-1913</eissn><abstract>Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31741437</pmid><doi>10.1016/j.amjcard.2019.10.027</doi><orcidid>https://orcid.org/0000-0001-8853-0505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9149
ispartof The American journal of cardiology, 2019-12, Vol.124 (Suppl 1), p.S28-S35
issn 0002-9149
1879-1913
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7258222
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Angiotensin
Angiotensin-converting enzyme inhibitors
Cardiovascular disease
Clinical medicine
Clinical trials
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Diabetic kidney disease
Disease Progression
Drugs
Energy
Enzyme inhibitors
Glomerular filtration
Glomerular filtration rate
Glomerular Filtration Rate - drug effects
Glomerular Filtration Rate - physiology
Glucose
Glucose transporter
Hemodynamics
Humans
Hyperfiltration
Kidney - drug effects
Kidney diseases
Kidney Tubules - drug effects
Kidney Tubules - metabolism
Kidney Tubules, Distal - drug effects
Kidney Tubules, Distal - metabolism
Kidney Tubules, Proximal - drug effects
Kidney Tubules, Proximal - metabolism
Kidneys
Long-term effects
Metabolism
Na+/H+-exchanging ATPase
Nitric oxide
Nitric Oxide Synthase - metabolism
Nitric-oxide synthase
Peptidyl-dipeptidase A
Proximal tubule
Reabsorption
Renal Circulation - drug effects
Renal Circulation - physiology
Renal Insufficiency, Chronic - complications
Renal Insufficiency, Chronic - metabolism
Sodium
Sodium-Glucose Transporter 1 - metabolism
Sodium-Glucose Transporter 2 - metabolism
Sodium-Glucose Transporter 2 Inhibitors - pharmacology
Sodium-Glucose Transporter 2 Inhibitors - therapeutic use
Sodium-Hydrogen Exchanger 3 - metabolism
Theory
Tubuloglomerular feedback
Urine
title Renal Effects of Sodium-Glucose Co-Transporter Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renal%20Effects%20of%20Sodium-Glucose%20Co-Transporter%20Inhibitors&rft.jtitle=The%20American%20journal%20of%20cardiology&rft.au=Thomson,%20Scott%20C.&rft.date=2019-12-15&rft.volume=124&rft.issue=Suppl%201&rft.spage=S28&rft.epage=S35&rft.pages=S28-S35&rft.issn=0002-9149&rft.eissn=1879-1913&rft_id=info:doi/10.1016/j.amjcard.2019.10.027&rft_dat=%3Cproquest_pubme%3E2314516692%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314516692&rft_id=info:pmid/31741437&rft_els_id=S0002914919311774&rfr_iscdi=true