TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer
Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGF...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2020-06, Vol.77 (11), p.2103-2123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2123 |
---|---|
container_issue | 11 |
container_start_page | 2103 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 77 |
creator | Hua, Wan ten Dijke, Peter Kostidis, Sarantos Giera, Martin Hornsveld, Marten |
description | Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGFβ) signaling pathway is a major driver of EMT. Increasing evidence demonstrates that metabolic reprogramming is a hallmark of cancer and extensive metabolic changes are observed during EMT. The aim of this review is to summarize and interconnect recent findings that illustrate how changes in glycolysis, mitochondrial, lipid and choline metabolism coincide and functionally contribute to TGFβ-induced EMT. We describe TGFβ signaling is involved in stimulating both glycolysis and mitochondrial respiration. Interestingly, the subsequent metabolic consequences for the redox state and lipid metabolism in cancer cells are found to be in favor of EMT as well. Combined we illustrate that a better understanding of the mechanistic links between TGFβ signaling, cancer metabolism and EMT holds promising strategies for cancer therapy, some of which are already actively being explored in the clinic. |
doi_str_mv | 10.1007/s00018-019-03398-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7256023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324910517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-17cf2c29289211495103dd3337220b5814750faaabfecf0bc6c8c7cd6f772b0a3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUh4MotlZfwIUMuHETe3KSmUw2ghRbhUI3LQguQiaTuTdlJhmTGaGv5YP4TOZ6r_XPoqtzIN_55Rw-Ql4yeMsA5GkGANZSYIoC56qlzSNyzAQCVSDZ40PftPj5iDzL-bbQdYvNU3LEWYuoGnFMvlxfnP_4Tn3oV-v6anKL6eLobZXcnOImmWnyYVP1a9oVN_tl60ZvRrpEOrnsgt3eTWaslmRC9ouPofKhsiZYl56TJ4MZs3txqCfk5vzD9dlHenl18ens_SW1QoqFMmkHtKiwVciYUDUD3vecc4kIXd0yIWsYjDHd4OwAnW1sa6Xtm0FK7MDwE_Junzuv3eR660LZZtRz8pNJdzoar_99CX6rN_Gbllg3gLwEvDkEpPh1dXnRk8_WjaMJLq5ZI0ehGNRMFvT1f-htXFMo52kUIIVSTIpC4Z6yKeac3HC_DAO9c6f37nRxp3-5000ZevX3Gfcjv2UVgO-BPO9suPTn7wdifwISHKcT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407499174</pqid></control><display><type>article</type><title>TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hua, Wan ; ten Dijke, Peter ; Kostidis, Sarantos ; Giera, Martin ; Hornsveld, Marten</creator><creatorcontrib>Hua, Wan ; ten Dijke, Peter ; Kostidis, Sarantos ; Giera, Martin ; Hornsveld, Marten</creatorcontrib><description>Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGFβ) signaling pathway is a major driver of EMT. Increasing evidence demonstrates that metabolic reprogramming is a hallmark of cancer and extensive metabolic changes are observed during EMT. The aim of this review is to summarize and interconnect recent findings that illustrate how changes in glycolysis, mitochondrial, lipid and choline metabolism coincide and functionally contribute to TGFβ-induced EMT. We describe TGFβ signaling is involved in stimulating both glycolysis and mitochondrial respiration. Interestingly, the subsequent metabolic consequences for the redox state and lipid metabolism in cancer cells are found to be in favor of EMT as well. Combined we illustrate that a better understanding of the mechanistic links between TGFβ signaling, cancer metabolism and EMT holds promising strategies for cancer therapy, some of which are already actively being explored in the clinic.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-019-03398-6</identifier><identifier>PMID: 31822964</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cell Biology ; Cell Respiration ; Choline ; Drug resistance ; Epithelial-Mesenchymal Transition ; Glycolysis ; Growth factors ; Humans ; Life Sciences ; Lipid Metabolism ; Lipids ; Mesenchyme ; Metabolism ; Metastases ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Neoplasms - metabolism ; Neoplasms - pathology ; Redox properties ; Review ; Signal Transduction ; Signaling ; Transforming Growth Factor beta - metabolism ; Transforming growth factor-b</subject><ispartof>Cellular and molecular life sciences : CMLS, 2020-06, Vol.77 (11), p.2103-2123</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-17cf2c29289211495103dd3337220b5814750faaabfecf0bc6c8c7cd6f772b0a3</citedby><cites>FETCH-LOGICAL-c474t-17cf2c29289211495103dd3337220b5814750faaabfecf0bc6c8c7cd6f772b0a3</cites><orcidid>0000-0002-7234-342X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31822964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Wan</creatorcontrib><creatorcontrib>ten Dijke, Peter</creatorcontrib><creatorcontrib>Kostidis, Sarantos</creatorcontrib><creatorcontrib>Giera, Martin</creatorcontrib><creatorcontrib>Hornsveld, Marten</creatorcontrib><title>TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGFβ) signaling pathway is a major driver of EMT. Increasing evidence demonstrates that metabolic reprogramming is a hallmark of cancer and extensive metabolic changes are observed during EMT. The aim of this review is to summarize and interconnect recent findings that illustrate how changes in glycolysis, mitochondrial, lipid and choline metabolism coincide and functionally contribute to TGFβ-induced EMT. We describe TGFβ signaling is involved in stimulating both glycolysis and mitochondrial respiration. Interestingly, the subsequent metabolic consequences for the redox state and lipid metabolism in cancer cells are found to be in favor of EMT as well. Combined we illustrate that a better understanding of the mechanistic links between TGFβ signaling, cancer metabolism and EMT holds promising strategies for cancer therapy, some of which are already actively being explored in the clinic.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Respiration</subject><subject>Choline</subject><subject>Drug resistance</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Glycolysis</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Mesenchyme</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Redox properties</subject><subject>Review</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming growth factor-b</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9qFTEUh4MotlZfwIUMuHETe3KSmUw2ghRbhUI3LQguQiaTuTdlJhmTGaGv5YP4TOZ6r_XPoqtzIN_55Rw-Ql4yeMsA5GkGANZSYIoC56qlzSNyzAQCVSDZ40PftPj5iDzL-bbQdYvNU3LEWYuoGnFMvlxfnP_4Tn3oV-v6anKL6eLobZXcnOImmWnyYVP1a9oVN_tl60ZvRrpEOrnsgt3eTWaslmRC9ouPofKhsiZYl56TJ4MZs3txqCfk5vzD9dlHenl18ens_SW1QoqFMmkHtKiwVciYUDUD3vecc4kIXd0yIWsYjDHd4OwAnW1sa6Xtm0FK7MDwE_Junzuv3eR660LZZtRz8pNJdzoar_99CX6rN_Gbllg3gLwEvDkEpPh1dXnRk8_WjaMJLq5ZI0ehGNRMFvT1f-htXFMo52kUIIVSTIpC4Z6yKeac3HC_DAO9c6f37nRxp3-5000ZevX3Gfcjv2UVgO-BPO9suPTn7wdifwISHKcT</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hua, Wan</creator><creator>ten Dijke, Peter</creator><creator>Kostidis, Sarantos</creator><creator>Giera, Martin</creator><creator>Hornsveld, Marten</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7234-342X</orcidid></search><sort><creationdate>20200601</creationdate><title>TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer</title><author>Hua, Wan ; ten Dijke, Peter ; Kostidis, Sarantos ; Giera, Martin ; Hornsveld, Marten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-17cf2c29289211495103dd3337220b5814750faaabfecf0bc6c8c7cd6f772b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Respiration</topic><topic>Choline</topic><topic>Drug resistance</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Glycolysis</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Mesenchyme</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Redox properties</topic><topic>Review</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming growth factor-b</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Wan</creatorcontrib><creatorcontrib>ten Dijke, Peter</creatorcontrib><creatorcontrib>Kostidis, Sarantos</creatorcontrib><creatorcontrib>Giera, Martin</creatorcontrib><creatorcontrib>Hornsveld, Marten</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Wan</au><au>ten Dijke, Peter</au><au>Kostidis, Sarantos</au><au>Giera, Martin</au><au>Hornsveld, Marten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>77</volume><issue>11</issue><spage>2103</spage><epage>2123</epage><pages>2103-2123</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGFβ) signaling pathway is a major driver of EMT. Increasing evidence demonstrates that metabolic reprogramming is a hallmark of cancer and extensive metabolic changes are observed during EMT. The aim of this review is to summarize and interconnect recent findings that illustrate how changes in glycolysis, mitochondrial, lipid and choline metabolism coincide and functionally contribute to TGFβ-induced EMT. We describe TGFβ signaling is involved in stimulating both glycolysis and mitochondrial respiration. Interestingly, the subsequent metabolic consequences for the redox state and lipid metabolism in cancer cells are found to be in favor of EMT as well. Combined we illustrate that a better understanding of the mechanistic links between TGFβ signaling, cancer metabolism and EMT holds promising strategies for cancer therapy, some of which are already actively being explored in the clinic.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31822964</pmid><doi>10.1007/s00018-019-03398-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7234-342X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2020-06, Vol.77 (11), p.2103-2123 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7256023 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Animals Biochemistry Biomedical and Life Sciences Biomedicine Cancer Cell Biology Cell Respiration Choline Drug resistance Epithelial-Mesenchymal Transition Glycolysis Growth factors Humans Life Sciences Lipid Metabolism Lipids Mesenchyme Metabolism Metastases Mitochondria Mitochondria - metabolism Mitochondria - pathology Neoplasms - metabolism Neoplasms - pathology Redox properties Review Signal Transduction Signaling Transforming Growth Factor beta - metabolism Transforming growth factor-b |
title | TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TGF%CE%B2-induced%20metabolic%20reprogramming%20during%20epithelial-to-mesenchymal%20transition%20in%20cancer&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Hua,%20Wan&rft.date=2020-06-01&rft.volume=77&rft.issue=11&rft.spage=2103&rft.epage=2123&rft.pages=2103-2123&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-019-03398-6&rft_dat=%3Cproquest_pubme%3E2324910517%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407499174&rft_id=info:pmid/31822964&rfr_iscdi=true |