On the benefits of flattening the curve: A perspective
The many variations on a graphic illustrating the impact of non-pharmaceutical measures to mitigate pandemic influenza that have appeared in recent news reports about COVID-19 suggest a need to better explain the mechanism by which social distancing reduces the spread of infectious diseases. And som...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2020-08, Vol.326, p.108389-108389, Article 108389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108389 |
---|---|
container_issue | |
container_start_page | 108389 |
container_title | Mathematical biosciences |
container_volume | 326 |
creator | Feng, Zhilan Glasser, John W. Hill, Andrew N. |
description | The many variations on a graphic illustrating the impact of non-pharmaceutical measures to mitigate pandemic influenza that have appeared in recent news reports about COVID-19 suggest a need to better explain the mechanism by which social distancing reduces the spread of infectious diseases. And some reports understate one benefit of reducing the frequency or proximity of interpersonal encounters, a reduction in the total number of infections. In hopes that understanding will increase compliance, we describe how social distancing (a) reduces the peak incidence of infections, (b) delays the occurrence of this peak, and (c) reduces the total number of infections during epidemics. In view of the extraordinary efforts underway to identify existing medications that are active against SARS-CoV-2 and to develop new antiviral drugs, vaccines and antibody therapies, any of which may have community-level effects, we also describe how pharmaceutical interventions affect transmission.
•Social distancing refers to non-pharmaceutical measures to mitigate pandemics.•These measures reduce the frequency or proximity of interpersonal encounters.•Their impact on daily and total numbers of new infections is commonly misrepresented.•We describe determinants of the magnitude and timing of the peak and the total number.•We also describe possible population-level effects of pharmaceutical interventions. |
doi_str_mv | 10.1016/j.mbs.2020.108389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7255246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556420300729</els_id><sourcerecordid>2444101660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-3121385b7544416bf2fb49f8dca84968d0fba211b1a4a92b991618fa3bf8c3a63</originalsourceid><addsrcrecordid>eNp9kVFrFDEUhYModrv6A3yRAV982TU3yWQShUIpVQuFvrTPIcnctFlmM2sys-C_N-vWoj70KYT73cO55xDyDugaKMhPm_XWlTWj7PBXXOkXZAGq0ysOXLwkC0pZu2pbKU7IaSkbSqEDkK_JCWei4yBhQeRNaqYHbBwmDHEqzRiaMNhpwhTT_e-Rn_MePzfnzQ5z2aGf4h7fkFfBDgXfPr5Lcvf18vbi--r65tvVxfn1yotOT9UHA65a17VCCJAusOCEDqr3VgktVU-DswzAgRVWM6d1NaWC5S4oz63kS3J21N3Nbou9xzRlO5hdjlubf5rRRvPvJMUHcz_uTcfalomDwMdHgTz-mLFMZhuLx2GwCce5GCaoAq1U9bkkH_5DN-OcUz2vUtV-TVzSSsGR8nksJWN4MgPUHBizMbUVc2jFHFupO-__vuJp408NFfhyBLBmuY-YTfERk8c-5hq46cf4jPwvxmubuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444101660</pqid></control><display><type>article</type><title>On the benefits of flattening the curve: A perspective</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Feng, Zhilan ; Glasser, John W. ; Hill, Andrew N.</creator><creatorcontrib>Feng, Zhilan ; Glasser, John W. ; Hill, Andrew N.</creatorcontrib><description>The many variations on a graphic illustrating the impact of non-pharmaceutical measures to mitigate pandemic influenza that have appeared in recent news reports about COVID-19 suggest a need to better explain the mechanism by which social distancing reduces the spread of infectious diseases. And some reports understate one benefit of reducing the frequency or proximity of interpersonal encounters, a reduction in the total number of infections. In hopes that understanding will increase compliance, we describe how social distancing (a) reduces the peak incidence of infections, (b) delays the occurrence of this peak, and (c) reduces the total number of infections during epidemics. In view of the extraordinary efforts underway to identify existing medications that are active against SARS-CoV-2 and to develop new antiviral drugs, vaccines and antibody therapies, any of which may have community-level effects, we also describe how pharmaceutical interventions affect transmission.
•Social distancing refers to non-pharmaceutical measures to mitigate pandemics.•These measures reduce the frequency or proximity of interpersonal encounters.•Their impact on daily and total numbers of new infections is commonly misrepresented.•We describe determinants of the magnitude and timing of the peak and the total number.•We also describe possible population-level effects of pharmaceutical interventions.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2020.108389</identifier><identifier>PMID: 32473161</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibodies ; Antiviral agents ; Basic Reproduction Number - statistics & numerical data ; Betacoronavirus ; Coronavirus Infections - epidemiology ; Coronavirus Infections - prevention & control ; Coronavirus Infections - transmission ; COVID-19 ; Disease control ; Epidemic curves ; Epidemics ; Humans ; Immunotherapy ; Impact of mitigation measures ; Incidence ; Infections ; Infectious diseases ; Influenza ; Mathematical Concepts ; Models, Biological ; Pandemics ; Pandemics - prevention & control ; Pandemics - statistics & numerical data ; Peak magnitude and timing ; Pharmaceuticals ; Pneumonia, Viral - epidemiology ; Pneumonia, Viral - prevention & control ; Pneumonia, Viral - transmission ; Public health ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; Social distancing ; Total infections ; Vaccines ; Viral diseases</subject><ispartof>Mathematical biosciences, 2020-08, Vol.326, p.108389-108389, Article 108389</ispartof><rights>2020</rights><rights>Published by Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Aug 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-3121385b7544416bf2fb49f8dca84968d0fba211b1a4a92b991618fa3bf8c3a63</citedby><cites>FETCH-LOGICAL-c479t-3121385b7544416bf2fb49f8dca84968d0fba211b1a4a92b991618fa3bf8c3a63</cites><orcidid>0000-0003-3451-5849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556420300729$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32473161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Zhilan</creatorcontrib><creatorcontrib>Glasser, John W.</creatorcontrib><creatorcontrib>Hill, Andrew N.</creatorcontrib><title>On the benefits of flattening the curve: A perspective</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>The many variations on a graphic illustrating the impact of non-pharmaceutical measures to mitigate pandemic influenza that have appeared in recent news reports about COVID-19 suggest a need to better explain the mechanism by which social distancing reduces the spread of infectious diseases. And some reports understate one benefit of reducing the frequency or proximity of interpersonal encounters, a reduction in the total number of infections. In hopes that understanding will increase compliance, we describe how social distancing (a) reduces the peak incidence of infections, (b) delays the occurrence of this peak, and (c) reduces the total number of infections during epidemics. In view of the extraordinary efforts underway to identify existing medications that are active against SARS-CoV-2 and to develop new antiviral drugs, vaccines and antibody therapies, any of which may have community-level effects, we also describe how pharmaceutical interventions affect transmission.
•Social distancing refers to non-pharmaceutical measures to mitigate pandemics.•These measures reduce the frequency or proximity of interpersonal encounters.•Their impact on daily and total numbers of new infections is commonly misrepresented.•We describe determinants of the magnitude and timing of the peak and the total number.•We also describe possible population-level effects of pharmaceutical interventions.</description><subject>Antibodies</subject><subject>Antiviral agents</subject><subject>Basic Reproduction Number - statistics & numerical data</subject><subject>Betacoronavirus</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronavirus Infections - prevention & control</subject><subject>Coronavirus Infections - transmission</subject><subject>COVID-19</subject><subject>Disease control</subject><subject>Epidemic curves</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Impact of mitigation measures</subject><subject>Incidence</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Mathematical Concepts</subject><subject>Models, Biological</subject><subject>Pandemics</subject><subject>Pandemics - prevention & control</subject><subject>Pandemics - statistics & numerical data</subject><subject>Peak magnitude and timing</subject><subject>Pharmaceuticals</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Pneumonia, Viral - prevention & control</subject><subject>Pneumonia, Viral - transmission</subject><subject>Public health</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Social distancing</subject><subject>Total infections</subject><subject>Vaccines</subject><subject>Viral diseases</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVFrFDEUhYModrv6A3yRAV982TU3yWQShUIpVQuFvrTPIcnctFlmM2sys-C_N-vWoj70KYT73cO55xDyDugaKMhPm_XWlTWj7PBXXOkXZAGq0ysOXLwkC0pZu2pbKU7IaSkbSqEDkK_JCWei4yBhQeRNaqYHbBwmDHEqzRiaMNhpwhTT_e-Rn_MePzfnzQ5z2aGf4h7fkFfBDgXfPr5Lcvf18vbi--r65tvVxfn1yotOT9UHA65a17VCCJAusOCEDqr3VgktVU-DswzAgRVWM6d1NaWC5S4oz63kS3J21N3Nbou9xzRlO5hdjlubf5rRRvPvJMUHcz_uTcfalomDwMdHgTz-mLFMZhuLx2GwCce5GCaoAq1U9bkkH_5DN-OcUz2vUtV-TVzSSsGR8nksJWN4MgPUHBizMbUVc2jFHFupO-__vuJp408NFfhyBLBmuY-YTfERk8c-5hq46cf4jPwvxmubuw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Feng, Zhilan</creator><creator>Glasser, John W.</creator><creator>Hill, Andrew N.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>American Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7SN</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3451-5849</orcidid></search><sort><creationdate>20200801</creationdate><title>On the benefits of flattening the curve: A perspective</title><author>Feng, Zhilan ; Glasser, John W. ; Hill, Andrew N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-3121385b7544416bf2fb49f8dca84968d0fba211b1a4a92b991618fa3bf8c3a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibodies</topic><topic>Antiviral agents</topic><topic>Basic Reproduction Number - statistics & numerical data</topic><topic>Betacoronavirus</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronavirus Infections - prevention & control</topic><topic>Coronavirus Infections - transmission</topic><topic>COVID-19</topic><topic>Disease control</topic><topic>Epidemic curves</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Impact of mitigation measures</topic><topic>Incidence</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Mathematical Concepts</topic><topic>Models, Biological</topic><topic>Pandemics</topic><topic>Pandemics - prevention & control</topic><topic>Pandemics - statistics & numerical data</topic><topic>Peak magnitude and timing</topic><topic>Pharmaceuticals</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Pneumonia, Viral - prevention & control</topic><topic>Pneumonia, Viral - transmission</topic><topic>Public health</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Social distancing</topic><topic>Total infections</topic><topic>Vaccines</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Zhilan</creatorcontrib><creatorcontrib>Glasser, John W.</creatorcontrib><creatorcontrib>Hill, Andrew N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Zhilan</au><au>Glasser, John W.</au><au>Hill, Andrew N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the benefits of flattening the curve: A perspective</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>326</volume><spage>108389</spage><epage>108389</epage><pages>108389-108389</pages><artnum>108389</artnum><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>The many variations on a graphic illustrating the impact of non-pharmaceutical measures to mitigate pandemic influenza that have appeared in recent news reports about COVID-19 suggest a need to better explain the mechanism by which social distancing reduces the spread of infectious diseases. And some reports understate one benefit of reducing the frequency or proximity of interpersonal encounters, a reduction in the total number of infections. In hopes that understanding will increase compliance, we describe how social distancing (a) reduces the peak incidence of infections, (b) delays the occurrence of this peak, and (c) reduces the total number of infections during epidemics. In view of the extraordinary efforts underway to identify existing medications that are active against SARS-CoV-2 and to develop new antiviral drugs, vaccines and antibody therapies, any of which may have community-level effects, we also describe how pharmaceutical interventions affect transmission.
•Social distancing refers to non-pharmaceutical measures to mitigate pandemics.•These measures reduce the frequency or proximity of interpersonal encounters.•Their impact on daily and total numbers of new infections is commonly misrepresented.•We describe determinants of the magnitude and timing of the peak and the total number.•We also describe possible population-level effects of pharmaceutical interventions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32473161</pmid><doi>10.1016/j.mbs.2020.108389</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3451-5849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2020-08, Vol.326, p.108389-108389, Article 108389 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7255246 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Antibodies Antiviral agents Basic Reproduction Number - statistics & numerical data Betacoronavirus Coronavirus Infections - epidemiology Coronavirus Infections - prevention & control Coronavirus Infections - transmission COVID-19 Disease control Epidemic curves Epidemics Humans Immunotherapy Impact of mitigation measures Incidence Infections Infectious diseases Influenza Mathematical Concepts Models, Biological Pandemics Pandemics - prevention & control Pandemics - statistics & numerical data Peak magnitude and timing Pharmaceuticals Pneumonia, Viral - epidemiology Pneumonia, Viral - prevention & control Pneumonia, Viral - transmission Public health SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Social distancing Total infections Vaccines Viral diseases |
title | On the benefits of flattening the curve: A perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20benefits%20of%20flattening%20the%20curve:%20A%20perspective&rft.jtitle=Mathematical%20biosciences&rft.au=Feng,%20Zhilan&rft.date=2020-08-01&rft.volume=326&rft.spage=108389&rft.epage=108389&rft.pages=108389-108389&rft.artnum=108389&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2020.108389&rft_dat=%3Cproquest_pubme%3E2444101660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444101660&rft_id=info:pmid/32473161&rft_els_id=S0025556420300729&rfr_iscdi=true |