Systems biology of ferroptosis: A modeling approach

•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2020-05, Vol.493, p.110222-110222, Article 110222
Hauptverfasser: Konstorum, Anna, Tesfay, Lia, Paul, Bibbin T., Torti, Frank M., Laubenbacher, Reinhard C., Torti, Suzy V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110222
container_issue
container_start_page 110222
container_title Journal of theoretical biology
container_volume 493
creator Konstorum, Anna
Tesfay, Lia
Paul, Bibbin T.
Torti, Frank M.
Laubenbacher, Reinhard C.
Torti, Suzy V.
description •Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers. Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.
doi_str_mv 10.1016/j.jtbi.2020.110222
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7254156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519320300771</els_id><sourcerecordid>2369881718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRtFb_gAfJ0UvqfmSzGxGhFL-g4EE9L8lm0m5JsnE3LfTfuyW16MXTwMw777zzIHRF8IRgkt6uJqu-MBOKaWgQTCk9QiOCMx5LnpBjNMKhF3OSsTN07v0KY5wlLD1FZ4wSkmDKRoi9b30PjY8KY2u72Ea2iipwzna99cbfRdOosSXUpl1Eedc5m-vlBTqp8trD5b6O0efT48fsJZ6_Pb_OpvNYJ5z3sRC84gIoZKUUTMuKyUJSyXRCheYhsBZCF6lINSMZABHAIZWFlrTICqg0G6OHwbdbFw2UGtre5bXqnGlyt1U2N-rvpDVLtbAbJWj4n6fB4GZv4OzXGnyvGuM11HXegl17RVmaSUkEkUFKB6l21nsH1eEMwWpHW63Ujrba0VYD7bB0_TvgYeUHbxDcDwIImDYGnPLaQKuhNA50r0pr_vP_Bp5okNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369881718</pqid></control><display><type>article</type><title>Systems biology of ferroptosis: A modeling approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Konstorum, Anna ; Tesfay, Lia ; Paul, Bibbin T. ; Torti, Frank M. ; Laubenbacher, Reinhard C. ; Torti, Suzy V.</creator><creatorcontrib>Konstorum, Anna ; Tesfay, Lia ; Paul, Bibbin T. ; Torti, Frank M. ; Laubenbacher, Reinhard C. ; Torti, Suzy V.</creatorcontrib><description>•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers. Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2020.110222</identifier><identifier>PMID: 32114023</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ACSL4 ; Cancer biology ; Cell Death ; Discrete model ; Ferroptosis ; Reactive Oxygen Species ; SCD1 ; Systems Biology</subject><ispartof>Journal of theoretical biology, 2020-05, Vol.493, p.110222-110222, Article 110222</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</citedby><cites>FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</cites><orcidid>0000-0003-4024-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2020.110222$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32114023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konstorum, Anna</creatorcontrib><creatorcontrib>Tesfay, Lia</creatorcontrib><creatorcontrib>Paul, Bibbin T.</creatorcontrib><creatorcontrib>Torti, Frank M.</creatorcontrib><creatorcontrib>Laubenbacher, Reinhard C.</creatorcontrib><creatorcontrib>Torti, Suzy V.</creatorcontrib><title>Systems biology of ferroptosis: A modeling approach</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers. Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.</description><subject>ACSL4</subject><subject>Cancer biology</subject><subject>Cell Death</subject><subject>Discrete model</subject><subject>Ferroptosis</subject><subject>Reactive Oxygen Species</subject><subject>SCD1</subject><subject>Systems Biology</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRtFb_gAfJ0UvqfmSzGxGhFL-g4EE9L8lm0m5JsnE3LfTfuyW16MXTwMw777zzIHRF8IRgkt6uJqu-MBOKaWgQTCk9QiOCMx5LnpBjNMKhF3OSsTN07v0KY5wlLD1FZ4wSkmDKRoi9b30PjY8KY2u72Ea2iipwzna99cbfRdOosSXUpl1Eedc5m-vlBTqp8trD5b6O0efT48fsJZ6_Pb_OpvNYJ5z3sRC84gIoZKUUTMuKyUJSyXRCheYhsBZCF6lINSMZABHAIZWFlrTICqg0G6OHwbdbFw2UGtre5bXqnGlyt1U2N-rvpDVLtbAbJWj4n6fB4GZv4OzXGnyvGuM11HXegl17RVmaSUkEkUFKB6l21nsH1eEMwWpHW63Ujrba0VYD7bB0_TvgYeUHbxDcDwIImDYGnPLaQKuhNA50r0pr_vP_Bp5okNg</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Konstorum, Anna</creator><creator>Tesfay, Lia</creator><creator>Paul, Bibbin T.</creator><creator>Torti, Frank M.</creator><creator>Laubenbacher, Reinhard C.</creator><creator>Torti, Suzy V.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4024-2058</orcidid></search><sort><creationdate>20200521</creationdate><title>Systems biology of ferroptosis: A modeling approach</title><author>Konstorum, Anna ; Tesfay, Lia ; Paul, Bibbin T. ; Torti, Frank M. ; Laubenbacher, Reinhard C. ; Torti, Suzy V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACSL4</topic><topic>Cancer biology</topic><topic>Cell Death</topic><topic>Discrete model</topic><topic>Ferroptosis</topic><topic>Reactive Oxygen Species</topic><topic>SCD1</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstorum, Anna</creatorcontrib><creatorcontrib>Tesfay, Lia</creatorcontrib><creatorcontrib>Paul, Bibbin T.</creatorcontrib><creatorcontrib>Torti, Frank M.</creatorcontrib><creatorcontrib>Laubenbacher, Reinhard C.</creatorcontrib><creatorcontrib>Torti, Suzy V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstorum, Anna</au><au>Tesfay, Lia</au><au>Paul, Bibbin T.</au><au>Torti, Frank M.</au><au>Laubenbacher, Reinhard C.</au><au>Torti, Suzy V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems biology of ferroptosis: A modeling approach</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>493</volume><spage>110222</spage><epage>110222</epage><pages>110222-110222</pages><artnum>110222</artnum><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers. Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32114023</pmid><doi>10.1016/j.jtbi.2020.110222</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4024-2058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2020-05, Vol.493, p.110222-110222, Article 110222
issn 0022-5193
1095-8541
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7254156
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects ACSL4
Cancer biology
Cell Death
Discrete model
Ferroptosis
Reactive Oxygen Species
SCD1
Systems Biology
title Systems biology of ferroptosis: A modeling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20biology%20of%20ferroptosis:%20A%20modeling%20approach&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Konstorum,%20Anna&rft.date=2020-05-21&rft.volume=493&rft.spage=110222&rft.epage=110222&rft.pages=110222-110222&rft.artnum=110222&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2020.110222&rft_dat=%3Cproquest_pubme%3E2369881718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369881718&rft_id=info:pmid/32114023&rft_els_id=S0022519320300771&rfr_iscdi=true