Systems biology of ferroptosis: A modeling approach
•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2020-05, Vol.493, p.110222-110222, Article 110222 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110222 |
---|---|
container_issue | |
container_start_page | 110222 |
container_title | Journal of theoretical biology |
container_volume | 493 |
creator | Konstorum, Anna Tesfay, Lia Paul, Bibbin T. Torti, Frank M. Laubenbacher, Reinhard C. Torti, Suzy V. |
description | •Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers.
Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis. |
doi_str_mv | 10.1016/j.jtbi.2020.110222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7254156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519320300771</els_id><sourcerecordid>2369881718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRtFb_gAfJ0UvqfmSzGxGhFL-g4EE9L8lm0m5JsnE3LfTfuyW16MXTwMw777zzIHRF8IRgkt6uJqu-MBOKaWgQTCk9QiOCMx5LnpBjNMKhF3OSsTN07v0KY5wlLD1FZ4wSkmDKRoi9b30PjY8KY2u72Ea2iipwzna99cbfRdOosSXUpl1Eedc5m-vlBTqp8trD5b6O0efT48fsJZ6_Pb_OpvNYJ5z3sRC84gIoZKUUTMuKyUJSyXRCheYhsBZCF6lINSMZABHAIZWFlrTICqg0G6OHwbdbFw2UGtre5bXqnGlyt1U2N-rvpDVLtbAbJWj4n6fB4GZv4OzXGnyvGuM11HXegl17RVmaSUkEkUFKB6l21nsH1eEMwWpHW63Ujrba0VYD7bB0_TvgYeUHbxDcDwIImDYGnPLaQKuhNA50r0pr_vP_Bp5okNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369881718</pqid></control><display><type>article</type><title>Systems biology of ferroptosis: A modeling approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Konstorum, Anna ; Tesfay, Lia ; Paul, Bibbin T. ; Torti, Frank M. ; Laubenbacher, Reinhard C. ; Torti, Suzy V.</creator><creatorcontrib>Konstorum, Anna ; Tesfay, Lia ; Paul, Bibbin T. ; Torti, Frank M. ; Laubenbacher, Reinhard C. ; Torti, Suzy V.</creatorcontrib><description>•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers.
Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2020.110222</identifier><identifier>PMID: 32114023</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ACSL4 ; Cancer biology ; Cell Death ; Discrete model ; Ferroptosis ; Reactive Oxygen Species ; SCD1 ; Systems Biology</subject><ispartof>Journal of theoretical biology, 2020-05, Vol.493, p.110222-110222, Article 110222</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</citedby><cites>FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</cites><orcidid>0000-0003-4024-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2020.110222$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32114023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konstorum, Anna</creatorcontrib><creatorcontrib>Tesfay, Lia</creatorcontrib><creatorcontrib>Paul, Bibbin T.</creatorcontrib><creatorcontrib>Torti, Frank M.</creatorcontrib><creatorcontrib>Laubenbacher, Reinhard C.</creatorcontrib><creatorcontrib>Torti, Suzy V.</creatorcontrib><title>Systems biology of ferroptosis: A modeling approach</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers.
Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.</description><subject>ACSL4</subject><subject>Cancer biology</subject><subject>Cell Death</subject><subject>Discrete model</subject><subject>Ferroptosis</subject><subject>Reactive Oxygen Species</subject><subject>SCD1</subject><subject>Systems Biology</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRtFb_gAfJ0UvqfmSzGxGhFL-g4EE9L8lm0m5JsnE3LfTfuyW16MXTwMw777zzIHRF8IRgkt6uJqu-MBOKaWgQTCk9QiOCMx5LnpBjNMKhF3OSsTN07v0KY5wlLD1FZ4wSkmDKRoi9b30PjY8KY2u72Ea2iipwzna99cbfRdOosSXUpl1Eedc5m-vlBTqp8trD5b6O0efT48fsJZ6_Pb_OpvNYJ5z3sRC84gIoZKUUTMuKyUJSyXRCheYhsBZCF6lINSMZABHAIZWFlrTICqg0G6OHwbdbFw2UGtre5bXqnGlyt1U2N-rvpDVLtbAbJWj4n6fB4GZv4OzXGnyvGuM11HXegl17RVmaSUkEkUFKB6l21nsH1eEMwWpHW63Ujrba0VYD7bB0_TvgYeUHbxDcDwIImDYGnPLaQKuhNA50r0pr_vP_Bp5okNg</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Konstorum, Anna</creator><creator>Tesfay, Lia</creator><creator>Paul, Bibbin T.</creator><creator>Torti, Frank M.</creator><creator>Laubenbacher, Reinhard C.</creator><creator>Torti, Suzy V.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4024-2058</orcidid></search><sort><creationdate>20200521</creationdate><title>Systems biology of ferroptosis: A modeling approach</title><author>Konstorum, Anna ; Tesfay, Lia ; Paul, Bibbin T. ; Torti, Frank M. ; Laubenbacher, Reinhard C. ; Torti, Suzy V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-775f57e2e9d873c8f38b8283c427c5110c77cb676c319ee17e5e68bc82b9befc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACSL4</topic><topic>Cancer biology</topic><topic>Cell Death</topic><topic>Discrete model</topic><topic>Ferroptosis</topic><topic>Reactive Oxygen Species</topic><topic>SCD1</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstorum, Anna</creatorcontrib><creatorcontrib>Tesfay, Lia</creatorcontrib><creatorcontrib>Paul, Bibbin T.</creatorcontrib><creatorcontrib>Torti, Frank M.</creatorcontrib><creatorcontrib>Laubenbacher, Reinhard C.</creatorcontrib><creatorcontrib>Torti, Suzy V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstorum, Anna</au><au>Tesfay, Lia</au><au>Paul, Bibbin T.</au><au>Torti, Frank M.</au><au>Laubenbacher, Reinhard C.</au><au>Torti, Suzy V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems biology of ferroptosis: A modeling approach</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>493</volume><spage>110222</spage><epage>110222</epage><pages>110222-110222</pages><artnum>110222</artnum><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Activating ferroptosis, a regulated form of cell death, has potential for cancer therapy.•We developed a discrete dynamic model for ferroptosis.•Input variables that modulate ferroptosis sensitivity were identified.•Experiments confirm that SCD1 and ACSL4 jointly determine ferroptosis sensitivity.•The model is a first step in predicting patient sensitivity to ferroptosis inducers.
Ferroptosis is a recently discovered form of iron-dependent regulated cell death (RCD) that occurs via peroxidation of phospholipids containing polyunsaturated fatty acid (PUFA) moieties. Activating this form of cell death is an emerging strategy in cancer treatment. Because multiple pathways and molecular species contribute to the ferroptotic process, predicting which tumors will be sensitive to ferroptosis is a challenge. We thus develop a mathematical model of several critical pathways to ferroptosis in order to perform a systems-level analysis of the process. We show that sensitivity to ferroptosis depends on the activity of multiple upstream cascades, including PUFA incorporation into the phospholipid membrane, and the balance between levels of pro-oxidant factors (reactive oxygen species, lipoxogynases) and antioxidant factors (GPX4). We perform a systems-level analysis of ferroptosis sensitivity as an outcome of five input variables (ACSL4, SCD1, ferroportin, transferrin receptor, and p53) and organize the resulting simulations into ‘high’ and ‘low’ ferroptosis sensitivity groups. We make a novel prediction corresponding to the combinatorial requirements of ferroptosis sensitivity to SCD1 and ACSL4 activity. To validate our prediction, we model the ferroptotic response of an ovarian cancer stem cell line following single- and double-knockdown of SCD1 and ACSL4. We find that the experimental outcomes are consistent with our simulated predictions. This work suggests that a systems-level approach is beneficial for understanding the complex combined effects of ferroptotic input, and in predicting cancer susceptibility to ferroptosis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32114023</pmid><doi>10.1016/j.jtbi.2020.110222</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4024-2058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2020-05, Vol.493, p.110222-110222, Article 110222 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7254156 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | ACSL4 Cancer biology Cell Death Discrete model Ferroptosis Reactive Oxygen Species SCD1 Systems Biology |
title | Systems biology of ferroptosis: A modeling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20biology%20of%20ferroptosis:%20A%20modeling%20approach&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Konstorum,%20Anna&rft.date=2020-05-21&rft.volume=493&rft.spage=110222&rft.epage=110222&rft.pages=110222-110222&rft.artnum=110222&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2020.110222&rft_dat=%3Cproquest_pubme%3E2369881718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369881718&rft_id=info:pmid/32114023&rft_els_id=S0022519320300771&rfr_iscdi=true |