Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics
Capillary networks controlled by simple low-voltage gates open up new possibilities for fluid delivery in point-of-care assays. Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay proto...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-04, Vol.6 (16), p.eaay8305-eaay8305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaay8305 |
---|---|
container_issue | 16 |
container_start_page | eaay8305 |
container_title | Science advances |
container_volume | 6 |
creator | Arango, Yulieth Temiz, Yuksel Gökçe, Onur Delamarche, Emmanuel |
description | Capillary networks controlled by simple low-voltage gates open up new possibilities for fluid delivery in point-of-care assays.
Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay protocol autonomously when used by a person with minimal training. Here, we present a versatile concept toward this goal by realizing programmable liquid circuits where liquids in capillary-driven microfluidic channels can be controlled and monitored from a smartphone to perform various advanced tasks of liquid manipulation. We achieve this by combining electro-actuated valves (e-gates) with passive capillary valves and self-vented channels. We demonstrate the concept by implementing a 5-mm-diameter microfluidic clock, a chip to control four liquids using 100 e-gates with electronic feedback, and designs to deliver and merge multiple liquids sequentially or in parallel in any order and combination. This concept is scalable, compatible with high-throughput manufacturing, and can be adopted in many microfluidics-based assays that would benefit from precise and easy handling of liquids. |
doi_str_mv | 10.1126/sciadv.aay8305 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7250678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409647137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-8d3950477a60cc76a340e595665559efbcfa59acd62825e8aa1cb9889b11a2313</originalsourceid><addsrcrecordid>eNpVkc1PHSEUxUmjqca6dc2ym3nyMcCwaWKMVRMTN-2a3GGYJw0DrzAzxm3_8qLvxegKuPfwu_fkIHRByYZSJi-L9TCsG4CXjhPxBZ0yrkTDRNsdfbifoPNS_hBCaCuloPorOuGs1a0k4hT9uwnOzjk1YOcFZjfgFcLqCoY44OLC2KwuvpbtE8ToQsEuQh8c3uW0zTBNb48xpGdsU6yg8PZzStHPKfu4xT5iCzsfAuSXZsi-8vDkbU5jWPzgbfmGjkcIxZ0fzjP0--fNr-u75uHx9v766qGxXKq56QauBWmVAkmsVRJ4S5zQonoSQruxtyMIDXaQrGPCdQDU9rrrdE8pME75Gfqx5-6WfnKDrb4yBLPLfqqrmQTefO5E_2S2aTWKCSJVVwHfD4Cc_i6uzGbyxbrqLLq0FMNaomWrKFdVutlLq89Sshvfx1BiXrMz--zMITv-H7Zokbc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409647137</pqid></control><display><type>article</type><title>Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Arango, Yulieth ; Temiz, Yuksel ; Gökçe, Onur ; Delamarche, Emmanuel</creator><creatorcontrib>Arango, Yulieth ; Temiz, Yuksel ; Gökçe, Onur ; Delamarche, Emmanuel</creatorcontrib><description>Capillary networks controlled by simple low-voltage gates open up new possibilities for fluid delivery in point-of-care assays.
Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay protocol autonomously when used by a person with minimal training. Here, we present a versatile concept toward this goal by realizing programmable liquid circuits where liquids in capillary-driven microfluidic channels can be controlled and monitored from a smartphone to perform various advanced tasks of liquid manipulation. We achieve this by combining electro-actuated valves (e-gates) with passive capillary valves and self-vented channels. We demonstrate the concept by implementing a 5-mm-diameter microfluidic clock, a chip to control four liquids using 100 e-gates with electronic feedback, and designs to deliver and merge multiple liquids sequentially or in parallel in any order and combination. This concept is scalable, compatible with high-throughput manufacturing, and can be adopted in many microfluidics-based assays that would benefit from precise and easy handling of liquids.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aay8305</identifier><identifier>PMID: 32494605</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; SciAdv r-articles</subject><ispartof>Science advances, 2020-04, Vol.6 (16), p.eaay8305-eaay8305</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-8d3950477a60cc76a340e595665559efbcfa59acd62825e8aa1cb9889b11a2313</citedby><cites>FETCH-LOGICAL-c367t-8d3950477a60cc76a340e595665559efbcfa59acd62825e8aa1cb9889b11a2313</cites><orcidid>0000-0001-9286-7864 ; 0000-0002-8753-8895 ; 0000-0002-3913-3893 ; 0000-0001-9042-3952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Arango, Yulieth</creatorcontrib><creatorcontrib>Temiz, Yuksel</creatorcontrib><creatorcontrib>Gökçe, Onur</creatorcontrib><creatorcontrib>Delamarche, Emmanuel</creatorcontrib><title>Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics</title><title>Science advances</title><description>Capillary networks controlled by simple low-voltage gates open up new possibilities for fluid delivery in point-of-care assays.
Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay protocol autonomously when used by a person with minimal training. Here, we present a versatile concept toward this goal by realizing programmable liquid circuits where liquids in capillary-driven microfluidic channels can be controlled and monitored from a smartphone to perform various advanced tasks of liquid manipulation. We achieve this by combining electro-actuated valves (e-gates) with passive capillary valves and self-vented channels. We demonstrate the concept by implementing a 5-mm-diameter microfluidic clock, a chip to control four liquids using 100 e-gates with electronic feedback, and designs to deliver and merge multiple liquids sequentially or in parallel in any order and combination. This concept is scalable, compatible with high-throughput manufacturing, and can be adopted in many microfluidics-based assays that would benefit from precise and easy handling of liquids.</description><subject>Applied Sciences and Engineering</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc1PHSEUxUmjqca6dc2ym3nyMcCwaWKMVRMTN-2a3GGYJw0DrzAzxm3_8qLvxegKuPfwu_fkIHRByYZSJi-L9TCsG4CXjhPxBZ0yrkTDRNsdfbifoPNS_hBCaCuloPorOuGs1a0k4hT9uwnOzjk1YOcFZjfgFcLqCoY44OLC2KwuvpbtE8ToQsEuQh8c3uW0zTBNb48xpGdsU6yg8PZzStHPKfu4xT5iCzsfAuSXZsi-8vDkbU5jWPzgbfmGjkcIxZ0fzjP0--fNr-u75uHx9v766qGxXKq56QauBWmVAkmsVRJ4S5zQonoSQruxtyMIDXaQrGPCdQDU9rrrdE8pME75Gfqx5-6WfnKDrb4yBLPLfqqrmQTefO5E_2S2aTWKCSJVVwHfD4Cc_i6uzGbyxbrqLLq0FMNaomWrKFdVutlLq89Sshvfx1BiXrMz--zMITv-H7Zokbc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Arango, Yulieth</creator><creator>Temiz, Yuksel</creator><creator>Gökçe, Onur</creator><creator>Delamarche, Emmanuel</creator><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9286-7864</orcidid><orcidid>https://orcid.org/0000-0002-8753-8895</orcidid><orcidid>https://orcid.org/0000-0002-3913-3893</orcidid><orcidid>https://orcid.org/0000-0001-9042-3952</orcidid></search><sort><creationdate>20200401</creationdate><title>Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics</title><author>Arango, Yulieth ; Temiz, Yuksel ; Gökçe, Onur ; Delamarche, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-8d3950477a60cc76a340e595665559efbcfa59acd62825e8aa1cb9889b11a2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied Sciences and Engineering</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arango, Yulieth</creatorcontrib><creatorcontrib>Temiz, Yuksel</creatorcontrib><creatorcontrib>Gökçe, Onur</creatorcontrib><creatorcontrib>Delamarche, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arango, Yulieth</au><au>Temiz, Yuksel</au><au>Gökçe, Onur</au><au>Delamarche, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics</atitle><jtitle>Science advances</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>6</volume><issue>16</issue><spage>eaay8305</spage><epage>eaay8305</epage><pages>eaay8305-eaay8305</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Capillary networks controlled by simple low-voltage gates open up new possibilities for fluid delivery in point-of-care assays.
Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay protocol autonomously when used by a person with minimal training. Here, we present a versatile concept toward this goal by realizing programmable liquid circuits where liquids in capillary-driven microfluidic channels can be controlled and monitored from a smartphone to perform various advanced tasks of liquid manipulation. We achieve this by combining electro-actuated valves (e-gates) with passive capillary valves and self-vented channels. We demonstrate the concept by implementing a 5-mm-diameter microfluidic clock, a chip to control four liquids using 100 e-gates with electronic feedback, and designs to deliver and merge multiple liquids sequentially or in parallel in any order and combination. This concept is scalable, compatible with high-throughput manufacturing, and can be adopted in many microfluidics-based assays that would benefit from precise and easy handling of liquids.</abstract><pub>American Association for the Advancement of Science</pub><pmid>32494605</pmid><doi>10.1126/sciadv.aay8305</doi><orcidid>https://orcid.org/0000-0001-9286-7864</orcidid><orcidid>https://orcid.org/0000-0002-8753-8895</orcidid><orcidid>https://orcid.org/0000-0002-3913-3893</orcidid><orcidid>https://orcid.org/0000-0001-9042-3952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-04, Vol.6 (16), p.eaay8305-eaay8305 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7250678 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Applied Sciences and Engineering SciAdv r-articles |
title | Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-actuated%20valves%20and%20self-vented%20channels%20enable%20programmable%20flow%20control%20and%20monitoring%20in%20capillary-driven%20microfluidics&rft.jtitle=Science%20advances&rft.au=Arango,%20Yulieth&rft.date=2020-04-01&rft.volume=6&rft.issue=16&rft.spage=eaay8305&rft.epage=eaay8305&rft.pages=eaay8305-eaay8305&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aay8305&rft_dat=%3Cproquest_pubme%3E2409647137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409647137&rft_id=info:pmid/32494605&rfr_iscdi=true |