A Data-Driven Review of the Genetic Factors of Pregnancy Complications
Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotyp...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-05, Vol.21 (9), p.3384 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3384 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Barbitoff, Yury A Tsarev, Alexander A Vashukova, Elena S Maksiutenko, Evgeniia M Kovalenko, Liudmila V Belotserkovtseva, Larisa D Glotov, Andrey S |
description | Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include
,
, and
. We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the
,
, and
genes, and replicate the effects of the
and
genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications. |
doi_str_mv | 10.3390/ijms21093384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7246997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404181324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMotj5unmXBiwdX89xsLkJprQqCInoOaXZWU3aTmmwr_vdu8UH1NMPMj4_55kPoiOBzxhS-cPM2UYIVYyXfQkPCKc0xLuT2Rj9AeynNMaaMCrWLBoxyzBghQzQdZRPTmXwS3Qp89ggrB-9ZqLPuFbJr8NA5m02N7UJM6_FDhBdvvP3IxqFdNM6azgWfDtBObZoEh991Hz1Pr57GN_nd_fXteHSXWy7LLhcGq5KYChMGtABuDLPCKlqomazLStaVwEJKpciMY1BVORPWFlJg4LIQomT76PJLd7GctVBZ8F00jV5E15r4oYNx-u_Gu1f9ElZaUl4oJXuB02-BGN6WkDrdumShaYyHsEx6_RjMZH9Sj578Q-dhGX1vb01xUpL-jT119kXZGFKKUP8eQ7BeB6Q3A-rx400Dv_BPIuwTDy2KxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404181324</pqid></control><display><type>article</type><title>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Barbitoff, Yury A ; Tsarev, Alexander A ; Vashukova, Elena S ; Maksiutenko, Evgeniia M ; Kovalenko, Liudmila V ; Belotserkovtseva, Larisa D ; Glotov, Andrey S</creator><creatorcontrib>Barbitoff, Yury A ; Tsarev, Alexander A ; Vashukova, Elena S ; Maksiutenko, Evgeniia M ; Kovalenko, Liudmila V ; Belotserkovtseva, Larisa D ; Glotov, Andrey S</creatorcontrib><description>Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include
,
, and
. We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the
,
, and
genes, and replicate the effects of the
and
genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21093384</identifier><identifier>PMID: 32403311</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Association analysis ; Automatic text analysis ; Biobanks ; Cell adhesion ; Cytokines ; Databases, Genetic ; Diabetes ; Diabetes mellitus ; Female ; Genes ; Genetic analysis ; Genetic factors ; Genetic Predisposition to Disease - genetics ; Genome, Human - genetics ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Humans ; Immune system ; Insulin-like growth factor II ; Lymphocytes T ; Pathogenesis ; Peroxisome proliferator-activated receptors ; Placenta ; Polymorphism, Single Nucleotide ; Pre-eclampsia ; Preeclampsia ; Pregnancy ; Pregnancy complications ; Pregnancy Complications - genetics ; Premature birth ; Risk analysis ; Risk Factors</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (9), p.3384</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</citedby><cites>FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</cites><orcidid>0000-0001-5708-7328 ; 0000-0002-3222-440X ; 0000-0002-7465-4504 ; 0000-0001-6995-4863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32403311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbitoff, Yury A</creatorcontrib><creatorcontrib>Tsarev, Alexander A</creatorcontrib><creatorcontrib>Vashukova, Elena S</creatorcontrib><creatorcontrib>Maksiutenko, Evgeniia M</creatorcontrib><creatorcontrib>Kovalenko, Liudmila V</creatorcontrib><creatorcontrib>Belotserkovtseva, Larisa D</creatorcontrib><creatorcontrib>Glotov, Andrey S</creatorcontrib><title>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include
,
, and
. We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the
,
, and
genes, and replicate the effects of the
and
genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.</description><subject>Association analysis</subject><subject>Automatic text analysis</subject><subject>Biobanks</subject><subject>Cell adhesion</subject><subject>Cytokines</subject><subject>Databases, Genetic</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic factors</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Immune system</subject><subject>Insulin-like growth factor II</subject><subject>Lymphocytes T</subject><subject>Pathogenesis</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Placenta</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Pre-eclampsia</subject><subject>Preeclampsia</subject><subject>Pregnancy</subject><subject>Pregnancy complications</subject><subject>Pregnancy Complications - genetics</subject><subject>Premature birth</subject><subject>Risk analysis</subject><subject>Risk Factors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctLAzEQxoMotj5unmXBiwdX89xsLkJprQqCInoOaXZWU3aTmmwr_vdu8UH1NMPMj4_55kPoiOBzxhS-cPM2UYIVYyXfQkPCKc0xLuT2Rj9AeynNMaaMCrWLBoxyzBghQzQdZRPTmXwS3Qp89ggrB-9ZqLPuFbJr8NA5m02N7UJM6_FDhBdvvP3IxqFdNM6azgWfDtBObZoEh991Hz1Pr57GN_nd_fXteHSXWy7LLhcGq5KYChMGtABuDLPCKlqomazLStaVwEJKpciMY1BVORPWFlJg4LIQomT76PJLd7GctVBZ8F00jV5E15r4oYNx-u_Gu1f9ElZaUl4oJXuB02-BGN6WkDrdumShaYyHsEx6_RjMZH9Sj578Q-dhGX1vb01xUpL-jT119kXZGFKKUP8eQ7BeB6Q3A-rx400Dv_BPIuwTDy2KxQ</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Barbitoff, Yury A</creator><creator>Tsarev, Alexander A</creator><creator>Vashukova, Elena S</creator><creator>Maksiutenko, Evgeniia M</creator><creator>Kovalenko, Liudmila V</creator><creator>Belotserkovtseva, Larisa D</creator><creator>Glotov, Andrey S</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5708-7328</orcidid><orcidid>https://orcid.org/0000-0002-3222-440X</orcidid><orcidid>https://orcid.org/0000-0002-7465-4504</orcidid><orcidid>https://orcid.org/0000-0001-6995-4863</orcidid></search><sort><creationdate>20200511</creationdate><title>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</title><author>Barbitoff, Yury A ; Tsarev, Alexander A ; Vashukova, Elena S ; Maksiutenko, Evgeniia M ; Kovalenko, Liudmila V ; Belotserkovtseva, Larisa D ; Glotov, Andrey S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Association analysis</topic><topic>Automatic text analysis</topic><topic>Biobanks</topic><topic>Cell adhesion</topic><topic>Cytokines</topic><topic>Databases, Genetic</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic factors</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Immune system</topic><topic>Insulin-like growth factor II</topic><topic>Lymphocytes T</topic><topic>Pathogenesis</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Placenta</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Pre-eclampsia</topic><topic>Preeclampsia</topic><topic>Pregnancy</topic><topic>Pregnancy complications</topic><topic>Pregnancy Complications - genetics</topic><topic>Premature birth</topic><topic>Risk analysis</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbitoff, Yury A</creatorcontrib><creatorcontrib>Tsarev, Alexander A</creatorcontrib><creatorcontrib>Vashukova, Elena S</creatorcontrib><creatorcontrib>Maksiutenko, Evgeniia M</creatorcontrib><creatorcontrib>Kovalenko, Liudmila V</creatorcontrib><creatorcontrib>Belotserkovtseva, Larisa D</creatorcontrib><creatorcontrib>Glotov, Andrey S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbitoff, Yury A</au><au>Tsarev, Alexander A</au><au>Vashukova, Elena S</au><au>Maksiutenko, Evgeniia M</au><au>Kovalenko, Liudmila V</au><au>Belotserkovtseva, Larisa D</au><au>Glotov, Andrey S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>21</volume><issue>9</issue><spage>3384</spage><pages>3384-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include
,
, and
. We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the
,
, and
genes, and replicate the effects of the
and
genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32403311</pmid><doi>10.3390/ijms21093384</doi><orcidid>https://orcid.org/0000-0001-5708-7328</orcidid><orcidid>https://orcid.org/0000-0002-3222-440X</orcidid><orcidid>https://orcid.org/0000-0002-7465-4504</orcidid><orcidid>https://orcid.org/0000-0001-6995-4863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-05, Vol.21 (9), p.3384 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7246997 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Association analysis Automatic text analysis Biobanks Cell adhesion Cytokines Databases, Genetic Diabetes Diabetes mellitus Female Genes Genetic analysis Genetic factors Genetic Predisposition to Disease - genetics Genome, Human - genetics Genome-Wide Association Study - methods Genomes Genomics Humans Immune system Insulin-like growth factor II Lymphocytes T Pathogenesis Peroxisome proliferator-activated receptors Placenta Polymorphism, Single Nucleotide Pre-eclampsia Preeclampsia Pregnancy Pregnancy complications Pregnancy Complications - genetics Premature birth Risk analysis Risk Factors |
title | A Data-Driven Review of the Genetic Factors of Pregnancy Complications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Review%20of%20the%20Genetic%20Factors%20of%20Pregnancy%20Complications&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Barbitoff,%20Yury%20A&rft.date=2020-05-11&rft.volume=21&rft.issue=9&rft.spage=3384&rft.pages=3384-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21093384&rft_dat=%3Cproquest_pubme%3E2404181324%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404181324&rft_id=info:pmid/32403311&rfr_iscdi=true |