A Data-Driven Review of the Genetic Factors of Pregnancy Complications

Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-05, Vol.21 (9), p.3384
Hauptverfasser: Barbitoff, Yury A, Tsarev, Alexander A, Vashukova, Elena S, Maksiutenko, Evgeniia M, Kovalenko, Liudmila V, Belotserkovtseva, Larisa D, Glotov, Andrey S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3384
container_title International journal of molecular sciences
container_volume 21
creator Barbitoff, Yury A
Tsarev, Alexander A
Vashukova, Elena S
Maksiutenko, Evgeniia M
Kovalenko, Liudmila V
Belotserkovtseva, Larisa D
Glotov, Andrey S
description Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include , , and . We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the , , and genes, and replicate the effects of the and genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.
doi_str_mv 10.3390/ijms21093384
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7246997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404181324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMotj5unmXBiwdX89xsLkJprQqCInoOaXZWU3aTmmwr_vdu8UH1NMPMj4_55kPoiOBzxhS-cPM2UYIVYyXfQkPCKc0xLuT2Rj9AeynNMaaMCrWLBoxyzBghQzQdZRPTmXwS3Qp89ggrB-9ZqLPuFbJr8NA5m02N7UJM6_FDhBdvvP3IxqFdNM6azgWfDtBObZoEh991Hz1Pr57GN_nd_fXteHSXWy7LLhcGq5KYChMGtABuDLPCKlqomazLStaVwEJKpciMY1BVORPWFlJg4LIQomT76PJLd7GctVBZ8F00jV5E15r4oYNx-u_Gu1f9ElZaUl4oJXuB02-BGN6WkDrdumShaYyHsEx6_RjMZH9Sj578Q-dhGX1vb01xUpL-jT119kXZGFKKUP8eQ7BeB6Q3A-rx400Dv_BPIuwTDy2KxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404181324</pqid></control><display><type>article</type><title>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Barbitoff, Yury A ; Tsarev, Alexander A ; Vashukova, Elena S ; Maksiutenko, Evgeniia M ; Kovalenko, Liudmila V ; Belotserkovtseva, Larisa D ; Glotov, Andrey S</creator><creatorcontrib>Barbitoff, Yury A ; Tsarev, Alexander A ; Vashukova, Elena S ; Maksiutenko, Evgeniia M ; Kovalenko, Liudmila V ; Belotserkovtseva, Larisa D ; Glotov, Andrey S</creatorcontrib><description>Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include , , and . We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the , , and genes, and replicate the effects of the and genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21093384</identifier><identifier>PMID: 32403311</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Association analysis ; Automatic text analysis ; Biobanks ; Cell adhesion ; Cytokines ; Databases, Genetic ; Diabetes ; Diabetes mellitus ; Female ; Genes ; Genetic analysis ; Genetic factors ; Genetic Predisposition to Disease - genetics ; Genome, Human - genetics ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Humans ; Immune system ; Insulin-like growth factor II ; Lymphocytes T ; Pathogenesis ; Peroxisome proliferator-activated receptors ; Placenta ; Polymorphism, Single Nucleotide ; Pre-eclampsia ; Preeclampsia ; Pregnancy ; Pregnancy complications ; Pregnancy Complications - genetics ; Premature birth ; Risk analysis ; Risk Factors</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (9), p.3384</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</citedby><cites>FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</cites><orcidid>0000-0001-5708-7328 ; 0000-0002-3222-440X ; 0000-0002-7465-4504 ; 0000-0001-6995-4863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246997/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32403311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbitoff, Yury A</creatorcontrib><creatorcontrib>Tsarev, Alexander A</creatorcontrib><creatorcontrib>Vashukova, Elena S</creatorcontrib><creatorcontrib>Maksiutenko, Evgeniia M</creatorcontrib><creatorcontrib>Kovalenko, Liudmila V</creatorcontrib><creatorcontrib>Belotserkovtseva, Larisa D</creatorcontrib><creatorcontrib>Glotov, Andrey S</creatorcontrib><title>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include , , and . We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the , , and genes, and replicate the effects of the and genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.</description><subject>Association analysis</subject><subject>Automatic text analysis</subject><subject>Biobanks</subject><subject>Cell adhesion</subject><subject>Cytokines</subject><subject>Databases, Genetic</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic factors</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Immune system</subject><subject>Insulin-like growth factor II</subject><subject>Lymphocytes T</subject><subject>Pathogenesis</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Placenta</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Pre-eclampsia</subject><subject>Preeclampsia</subject><subject>Pregnancy</subject><subject>Pregnancy complications</subject><subject>Pregnancy Complications - genetics</subject><subject>Premature birth</subject><subject>Risk analysis</subject><subject>Risk Factors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctLAzEQxoMotj5unmXBiwdX89xsLkJprQqCInoOaXZWU3aTmmwr_vdu8UH1NMPMj4_55kPoiOBzxhS-cPM2UYIVYyXfQkPCKc0xLuT2Rj9AeynNMaaMCrWLBoxyzBghQzQdZRPTmXwS3Qp89ggrB-9ZqLPuFbJr8NA5m02N7UJM6_FDhBdvvP3IxqFdNM6azgWfDtBObZoEh991Hz1Pr57GN_nd_fXteHSXWy7LLhcGq5KYChMGtABuDLPCKlqomazLStaVwEJKpciMY1BVORPWFlJg4LIQomT76PJLd7GctVBZ8F00jV5E15r4oYNx-u_Gu1f9ElZaUl4oJXuB02-BGN6WkDrdumShaYyHsEx6_RjMZH9Sj578Q-dhGX1vb01xUpL-jT119kXZGFKKUP8eQ7BeB6Q3A-rx400Dv_BPIuwTDy2KxQ</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Barbitoff, Yury A</creator><creator>Tsarev, Alexander A</creator><creator>Vashukova, Elena S</creator><creator>Maksiutenko, Evgeniia M</creator><creator>Kovalenko, Liudmila V</creator><creator>Belotserkovtseva, Larisa D</creator><creator>Glotov, Andrey S</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5708-7328</orcidid><orcidid>https://orcid.org/0000-0002-3222-440X</orcidid><orcidid>https://orcid.org/0000-0002-7465-4504</orcidid><orcidid>https://orcid.org/0000-0001-6995-4863</orcidid></search><sort><creationdate>20200511</creationdate><title>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</title><author>Barbitoff, Yury A ; Tsarev, Alexander A ; Vashukova, Elena S ; Maksiutenko, Evgeniia M ; Kovalenko, Liudmila V ; Belotserkovtseva, Larisa D ; Glotov, Andrey S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-5a0981ad013e26e4aa3c5c9269b7f8d7fd50577991b40e9d8b5cc6750e4765583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Association analysis</topic><topic>Automatic text analysis</topic><topic>Biobanks</topic><topic>Cell adhesion</topic><topic>Cytokines</topic><topic>Databases, Genetic</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic factors</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Immune system</topic><topic>Insulin-like growth factor II</topic><topic>Lymphocytes T</topic><topic>Pathogenesis</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Placenta</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Pre-eclampsia</topic><topic>Preeclampsia</topic><topic>Pregnancy</topic><topic>Pregnancy complications</topic><topic>Pregnancy Complications - genetics</topic><topic>Premature birth</topic><topic>Risk analysis</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbitoff, Yury A</creatorcontrib><creatorcontrib>Tsarev, Alexander A</creatorcontrib><creatorcontrib>Vashukova, Elena S</creatorcontrib><creatorcontrib>Maksiutenko, Evgeniia M</creatorcontrib><creatorcontrib>Kovalenko, Liudmila V</creatorcontrib><creatorcontrib>Belotserkovtseva, Larisa D</creatorcontrib><creatorcontrib>Glotov, Andrey S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbitoff, Yury A</au><au>Tsarev, Alexander A</au><au>Vashukova, Elena S</au><au>Maksiutenko, Evgeniia M</au><au>Kovalenko, Liudmila V</au><au>Belotserkovtseva, Larisa D</au><au>Glotov, Andrey S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Review of the Genetic Factors of Pregnancy Complications</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>21</volume><issue>9</issue><spage>3384</spage><pages>3384-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones-preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include , , and . We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the , , and genes, and replicate the effects of the and genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32403311</pmid><doi>10.3390/ijms21093384</doi><orcidid>https://orcid.org/0000-0001-5708-7328</orcidid><orcidid>https://orcid.org/0000-0002-3222-440X</orcidid><orcidid>https://orcid.org/0000-0002-7465-4504</orcidid><orcidid>https://orcid.org/0000-0001-6995-4863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-05, Vol.21 (9), p.3384
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7246997
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Association analysis
Automatic text analysis
Biobanks
Cell adhesion
Cytokines
Databases, Genetic
Diabetes
Diabetes mellitus
Female
Genes
Genetic analysis
Genetic factors
Genetic Predisposition to Disease - genetics
Genome, Human - genetics
Genome-Wide Association Study - methods
Genomes
Genomics
Humans
Immune system
Insulin-like growth factor II
Lymphocytes T
Pathogenesis
Peroxisome proliferator-activated receptors
Placenta
Polymorphism, Single Nucleotide
Pre-eclampsia
Preeclampsia
Pregnancy
Pregnancy complications
Pregnancy Complications - genetics
Premature birth
Risk analysis
Risk Factors
title A Data-Driven Review of the Genetic Factors of Pregnancy Complications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Review%20of%20the%20Genetic%20Factors%20of%20Pregnancy%20Complications&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Barbitoff,%20Yury%20A&rft.date=2020-05-11&rft.volume=21&rft.issue=9&rft.spage=3384&rft.pages=3384-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21093384&rft_dat=%3Cproquest_pubme%3E2404181324%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404181324&rft_id=info:pmid/32403311&rfr_iscdi=true