Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion
While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblas...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-05, Vol.117 (20), p.10832-10838 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10838 |
---|---|
container_issue | 20 |
container_start_page | 10832 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Liu, Longwei Yu, Hongsheng Zhao, Hui Wu, Zhaozhao Long, Yi Zhang, Jingbo Yan, Xiaojun You, Zhifeng Zhou, Lyu Xia, Tie Shi, Yan Xiao, Bailong Wang, Yingxiao Huang, Chenyu Du, Yanan |
description | While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling. |
doi_str_mv | 10.1073/pnas.1910650117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7245086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26931144</jstor_id><sourcerecordid>26931144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS1ERIbAmhWoJTZsOik_um1vkKIoPKREbGBtuT324MFtN7YHJbv8Q_4wX0JPJkyAlVW-p66q6iL0CsMxBk5PpqjLMZYY-g4w5k_QAoPEbc8kPEULAMJbwQg7RM9LWQOA7AQ8Q4eU0E5gCQsULnXN_qqtWccy-lrtspl01tXG4oNtil9FHXxcNTbqIdjSjNfJ-SGnIehS725uH4vG5FRKU3X40fjY3AvFl8ZeTbO5T_EFOnA6FPvy4T1C3z6cfz371F58-fj57PSiNR3I2i4l1gYsYWJwcv4aGJcgKRUcmAEhrAOOB7N0mmMjMTbAwVHOBwmODK6nR-j9znfaDKNdGhvn9YKash91vlZJe_WvEv13tUq_FCesA7E1ePdgkNPPjS1Vjb4YG4KONm2KIlTyvheCsBl9-x-6Tps832ymGHSC9V1HZupkR92fKFu3HwaD2iaptkmqxyTnjjd_77Dn_0Q3A693wLrUlPc66SXFmDH6G8irp_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405846552</pqid></control><display><type>article</type><title>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Longwei ; Yu, Hongsheng ; Zhao, Hui ; Wu, Zhaozhao ; Long, Yi ; Zhang, Jingbo ; Yan, Xiaojun ; You, Zhifeng ; Zhou, Lyu ; Xia, Tie ; Shi, Yan ; Xiao, Bailong ; Wang, Yingxiao ; Huang, Chenyu ; Du, Yanan</creator><creatorcontrib>Liu, Longwei ; Yu, Hongsheng ; Zhao, Hui ; Wu, Zhaozhao ; Long, Yi ; Zhang, Jingbo ; Yan, Xiaojun ; You, Zhifeng ; Zhou, Lyu ; Xia, Tie ; Shi, Yan ; Xiao, Bailong ; Wang, Yingxiao ; Huang, Chenyu ; Du, Yanan</creatorcontrib><description>While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910650117</identifier><identifier>PMID: 32358190</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Calcium signalling ; Cell signaling ; Collagen ; Crosstalk ; Discoidin Domain Receptor 2 - metabolism ; Fibers ; Fibroblasts ; Fibroblasts - metabolism ; Fibrosis ; Fibrosis - metabolism ; Growth models ; Humans ; Integrins ; Ion channels ; Ion Channels - metabolism ; Mathematical analysis ; Mathematical models ; Matrix methods ; Mechanotransduction ; Mechanotransduction, Cellular ; Myofibroblasts - metabolism ; Physical Sciences ; Signal Transduction - physiology ; Signaling</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-05, Vol.117 (20), p.10832-10838</ispartof><rights>Copyright National Academy of Sciences May 19, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</citedby><cites>FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</cites><orcidid>0000-0003-0265-326X ; 0000-0001-9521-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26931144$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26931144$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32358190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Longwei</creatorcontrib><creatorcontrib>Yu, Hongsheng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wu, Zhaozhao</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Zhang, Jingbo</creatorcontrib><creatorcontrib>Yan, Xiaojun</creatorcontrib><creatorcontrib>You, Zhifeng</creatorcontrib><creatorcontrib>Zhou, Lyu</creatorcontrib><creatorcontrib>Xia, Tie</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><creatorcontrib>Huang, Chenyu</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><title>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium signalling</subject><subject>Cell signaling</subject><subject>Collagen</subject><subject>Crosstalk</subject><subject>Discoidin Domain Receptor 2 - metabolism</subject><subject>Fibers</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Fibrosis - metabolism</subject><subject>Growth models</subject><subject>Humans</subject><subject>Integrins</subject><subject>Ion channels</subject><subject>Ion Channels - metabolism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>Myofibroblasts - metabolism</subject><subject>Physical Sciences</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS1ERIbAmhWoJTZsOik_um1vkKIoPKREbGBtuT324MFtN7YHJbv8Q_4wX0JPJkyAlVW-p66q6iL0CsMxBk5PpqjLMZYY-g4w5k_QAoPEbc8kPEULAMJbwQg7RM9LWQOA7AQ8Q4eU0E5gCQsULnXN_qqtWccy-lrtspl01tXG4oNtil9FHXxcNTbqIdjSjNfJ-SGnIehS725uH4vG5FRKU3X40fjY3AvFl8ZeTbO5T_EFOnA6FPvy4T1C3z6cfz371F58-fj57PSiNR3I2i4l1gYsYWJwcv4aGJcgKRUcmAEhrAOOB7N0mmMjMTbAwVHOBwmODK6nR-j9znfaDKNdGhvn9YKash91vlZJe_WvEv13tUq_FCesA7E1ePdgkNPPjS1Vjb4YG4KONm2KIlTyvheCsBl9-x-6Tps832ymGHSC9V1HZupkR92fKFu3HwaD2iaptkmqxyTnjjd_77Dn_0Q3A693wLrUlPc66SXFmDH6G8irp_k</recordid><startdate>20200519</startdate><enddate>20200519</enddate><creator>Liu, Longwei</creator><creator>Yu, Hongsheng</creator><creator>Zhao, Hui</creator><creator>Wu, Zhaozhao</creator><creator>Long, Yi</creator><creator>Zhang, Jingbo</creator><creator>Yan, Xiaojun</creator><creator>You, Zhifeng</creator><creator>Zhou, Lyu</creator><creator>Xia, Tie</creator><creator>Shi, Yan</creator><creator>Xiao, Bailong</creator><creator>Wang, Yingxiao</creator><creator>Huang, Chenyu</creator><creator>Du, Yanan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0265-326X</orcidid><orcidid>https://orcid.org/0000-0001-9521-5650</orcidid></search><sort><creationdate>20200519</creationdate><title>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</title><author>Liu, Longwei ; Yu, Hongsheng ; Zhao, Hui ; Wu, Zhaozhao ; Long, Yi ; Zhang, Jingbo ; Yan, Xiaojun ; You, Zhifeng ; Zhou, Lyu ; Xia, Tie ; Shi, Yan ; Xiao, Bailong ; Wang, Yingxiao ; Huang, Chenyu ; Du, Yanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium signalling</topic><topic>Cell signaling</topic><topic>Collagen</topic><topic>Crosstalk</topic><topic>Discoidin Domain Receptor 2 - metabolism</topic><topic>Fibers</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Fibrosis - metabolism</topic><topic>Growth models</topic><topic>Humans</topic><topic>Integrins</topic><topic>Ion channels</topic><topic>Ion Channels - metabolism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>Myofibroblasts - metabolism</topic><topic>Physical Sciences</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Longwei</creatorcontrib><creatorcontrib>Yu, Hongsheng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wu, Zhaozhao</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Zhang, Jingbo</creatorcontrib><creatorcontrib>Yan, Xiaojun</creatorcontrib><creatorcontrib>You, Zhifeng</creatorcontrib><creatorcontrib>Zhou, Lyu</creatorcontrib><creatorcontrib>Xia, Tie</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><creatorcontrib>Huang, Chenyu</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Longwei</au><au>Yu, Hongsheng</au><au>Zhao, Hui</au><au>Wu, Zhaozhao</au><au>Long, Yi</au><au>Zhang, Jingbo</au><au>Yan, Xiaojun</au><au>You, Zhifeng</au><au>Zhou, Lyu</au><au>Xia, Tie</au><au>Shi, Yan</au><au>Xiao, Bailong</au><au>Wang, Yingxiao</au><au>Huang, Chenyu</au><au>Du, Yanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-05-19</date><risdate>2020</risdate><volume>117</volume><issue>20</issue><spage>10832</spage><epage>10838</epage><pages>10832-10838</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32358190</pmid><doi>10.1073/pnas.1910650117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0265-326X</orcidid><orcidid>https://orcid.org/0000-0001-9521-5650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-05, Vol.117 (20), p.10832-10838 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7245086 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Calcium signalling Cell signaling Collagen Crosstalk Discoidin Domain Receptor 2 - metabolism Fibers Fibroblasts Fibroblasts - metabolism Fibrosis Fibrosis - metabolism Growth models Humans Integrins Ion channels Ion Channels - metabolism Mathematical analysis Mathematical models Matrix methods Mechanotransduction Mechanotransduction, Cellular Myofibroblasts - metabolism Physical Sciences Signal Transduction - physiology Signaling |
title | Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-transmitted%20paratensile%20signaling%20enables%20myofibroblast%E2%80%93fibroblast%20cross%20talk%20in%20fibrosis%20expansion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Longwei&rft.date=2020-05-19&rft.volume=117&rft.issue=20&rft.spage=10832&rft.epage=10838&rft.pages=10832-10838&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910650117&rft_dat=%3Cjstor_pubme%3E26931144%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405846552&rft_id=info:pmid/32358190&rft_jstor_id=26931144&rfr_iscdi=true |