Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion

While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-05, Vol.117 (20), p.10832-10838
Hauptverfasser: Liu, Longwei, Yu, Hongsheng, Zhao, Hui, Wu, Zhaozhao, Long, Yi, Zhang, Jingbo, Yan, Xiaojun, You, Zhifeng, Zhou, Lyu, Xia, Tie, Shi, Yan, Xiao, Bailong, Wang, Yingxiao, Huang, Chenyu, Du, Yanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10838
container_issue 20
container_start_page 10832
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Liu, Longwei
Yu, Hongsheng
Zhao, Hui
Wu, Zhaozhao
Long, Yi
Zhang, Jingbo
Yan, Xiaojun
You, Zhifeng
Zhou, Lyu
Xia, Tie
Shi, Yan
Xiao, Bailong
Wang, Yingxiao
Huang, Chenyu
Du, Yanan
description While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.
doi_str_mv 10.1073/pnas.1910650117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7245086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26931144</jstor_id><sourcerecordid>26931144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS1ERIbAmhWoJTZsOik_um1vkKIoPKREbGBtuT324MFtN7YHJbv8Q_4wX0JPJkyAlVW-p66q6iL0CsMxBk5PpqjLMZYY-g4w5k_QAoPEbc8kPEULAMJbwQg7RM9LWQOA7AQ8Q4eU0E5gCQsULnXN_qqtWccy-lrtspl01tXG4oNtil9FHXxcNTbqIdjSjNfJ-SGnIehS725uH4vG5FRKU3X40fjY3AvFl8ZeTbO5T_EFOnA6FPvy4T1C3z6cfz371F58-fj57PSiNR3I2i4l1gYsYWJwcv4aGJcgKRUcmAEhrAOOB7N0mmMjMTbAwVHOBwmODK6nR-j9znfaDKNdGhvn9YKash91vlZJe_WvEv13tUq_FCesA7E1ePdgkNPPjS1Vjb4YG4KONm2KIlTyvheCsBl9-x-6Tps832ymGHSC9V1HZupkR92fKFu3HwaD2iaptkmqxyTnjjd_77Dn_0Q3A693wLrUlPc66SXFmDH6G8irp_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405846552</pqid></control><display><type>article</type><title>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Longwei ; Yu, Hongsheng ; Zhao, Hui ; Wu, Zhaozhao ; Long, Yi ; Zhang, Jingbo ; Yan, Xiaojun ; You, Zhifeng ; Zhou, Lyu ; Xia, Tie ; Shi, Yan ; Xiao, Bailong ; Wang, Yingxiao ; Huang, Chenyu ; Du, Yanan</creator><creatorcontrib>Liu, Longwei ; Yu, Hongsheng ; Zhao, Hui ; Wu, Zhaozhao ; Long, Yi ; Zhang, Jingbo ; Yan, Xiaojun ; You, Zhifeng ; Zhou, Lyu ; Xia, Tie ; Shi, Yan ; Xiao, Bailong ; Wang, Yingxiao ; Huang, Chenyu ; Du, Yanan</creatorcontrib><description>While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1910650117</identifier><identifier>PMID: 32358190</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Calcium signalling ; Cell signaling ; Collagen ; Crosstalk ; Discoidin Domain Receptor 2 - metabolism ; Fibers ; Fibroblasts ; Fibroblasts - metabolism ; Fibrosis ; Fibrosis - metabolism ; Growth models ; Humans ; Integrins ; Ion channels ; Ion Channels - metabolism ; Mathematical analysis ; Mathematical models ; Matrix methods ; Mechanotransduction ; Mechanotransduction, Cellular ; Myofibroblasts - metabolism ; Physical Sciences ; Signal Transduction - physiology ; Signaling</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-05, Vol.117 (20), p.10832-10838</ispartof><rights>Copyright National Academy of Sciences May 19, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</citedby><cites>FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</cites><orcidid>0000-0003-0265-326X ; 0000-0001-9521-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26931144$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26931144$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32358190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Longwei</creatorcontrib><creatorcontrib>Yu, Hongsheng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wu, Zhaozhao</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Zhang, Jingbo</creatorcontrib><creatorcontrib>Yan, Xiaojun</creatorcontrib><creatorcontrib>You, Zhifeng</creatorcontrib><creatorcontrib>Zhou, Lyu</creatorcontrib><creatorcontrib>Xia, Tie</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><creatorcontrib>Huang, Chenyu</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><title>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium signalling</subject><subject>Cell signaling</subject><subject>Collagen</subject><subject>Crosstalk</subject><subject>Discoidin Domain Receptor 2 - metabolism</subject><subject>Fibers</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Fibrosis - metabolism</subject><subject>Growth models</subject><subject>Humans</subject><subject>Integrins</subject><subject>Ion channels</subject><subject>Ion Channels - metabolism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>Myofibroblasts - metabolism</subject><subject>Physical Sciences</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS1ERIbAmhWoJTZsOik_um1vkKIoPKREbGBtuT324MFtN7YHJbv8Q_4wX0JPJkyAlVW-p66q6iL0CsMxBk5PpqjLMZYY-g4w5k_QAoPEbc8kPEULAMJbwQg7RM9LWQOA7AQ8Q4eU0E5gCQsULnXN_qqtWccy-lrtspl01tXG4oNtil9FHXxcNTbqIdjSjNfJ-SGnIehS725uH4vG5FRKU3X40fjY3AvFl8ZeTbO5T_EFOnA6FPvy4T1C3z6cfz371F58-fj57PSiNR3I2i4l1gYsYWJwcv4aGJcgKRUcmAEhrAOOB7N0mmMjMTbAwVHOBwmODK6nR-j9znfaDKNdGhvn9YKash91vlZJe_WvEv13tUq_FCesA7E1ePdgkNPPjS1Vjb4YG4KONm2KIlTyvheCsBl9-x-6Tps832ymGHSC9V1HZupkR92fKFu3HwaD2iaptkmqxyTnjjd_77Dn_0Q3A693wLrUlPc66SXFmDH6G8irp_k</recordid><startdate>20200519</startdate><enddate>20200519</enddate><creator>Liu, Longwei</creator><creator>Yu, Hongsheng</creator><creator>Zhao, Hui</creator><creator>Wu, Zhaozhao</creator><creator>Long, Yi</creator><creator>Zhang, Jingbo</creator><creator>Yan, Xiaojun</creator><creator>You, Zhifeng</creator><creator>Zhou, Lyu</creator><creator>Xia, Tie</creator><creator>Shi, Yan</creator><creator>Xiao, Bailong</creator><creator>Wang, Yingxiao</creator><creator>Huang, Chenyu</creator><creator>Du, Yanan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0265-326X</orcidid><orcidid>https://orcid.org/0000-0001-9521-5650</orcidid></search><sort><creationdate>20200519</creationdate><title>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</title><author>Liu, Longwei ; Yu, Hongsheng ; Zhao, Hui ; Wu, Zhaozhao ; Long, Yi ; Zhang, Jingbo ; Yan, Xiaojun ; You, Zhifeng ; Zhou, Lyu ; Xia, Tie ; Shi, Yan ; Xiao, Bailong ; Wang, Yingxiao ; Huang, Chenyu ; Du, Yanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d91ac0e248bf9c50b47909338704c088ef071bcdfa71c911c070f377b90f2bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium signalling</topic><topic>Cell signaling</topic><topic>Collagen</topic><topic>Crosstalk</topic><topic>Discoidin Domain Receptor 2 - metabolism</topic><topic>Fibers</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Fibrosis - metabolism</topic><topic>Growth models</topic><topic>Humans</topic><topic>Integrins</topic><topic>Ion channels</topic><topic>Ion Channels - metabolism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>Myofibroblasts - metabolism</topic><topic>Physical Sciences</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Longwei</creatorcontrib><creatorcontrib>Yu, Hongsheng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wu, Zhaozhao</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Zhang, Jingbo</creatorcontrib><creatorcontrib>Yan, Xiaojun</creatorcontrib><creatorcontrib>You, Zhifeng</creatorcontrib><creatorcontrib>Zhou, Lyu</creatorcontrib><creatorcontrib>Xia, Tie</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><creatorcontrib>Wang, Yingxiao</creatorcontrib><creatorcontrib>Huang, Chenyu</creatorcontrib><creatorcontrib>Du, Yanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Longwei</au><au>Yu, Hongsheng</au><au>Zhao, Hui</au><au>Wu, Zhaozhao</au><au>Long, Yi</au><au>Zhang, Jingbo</au><au>Yan, Xiaojun</au><au>You, Zhifeng</au><au>Zhou, Lyu</au><au>Xia, Tie</au><au>Shi, Yan</au><au>Xiao, Bailong</au><au>Wang, Yingxiao</au><au>Huang, Chenyu</au><au>Du, Yanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-05-19</date><risdate>2020</risdate><volume>117</volume><issue>20</issue><spage>10832</spage><epage>10838</epage><pages>10832-10838</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context ofmyofibroblast–fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast–fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 μm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32358190</pmid><doi>10.1073/pnas.1910650117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0265-326X</orcidid><orcidid>https://orcid.org/0000-0001-9521-5650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-05, Vol.117 (20), p.10832-10838
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7245086
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Calcium signalling
Cell signaling
Collagen
Crosstalk
Discoidin Domain Receptor 2 - metabolism
Fibers
Fibroblasts
Fibroblasts - metabolism
Fibrosis
Fibrosis - metabolism
Growth models
Humans
Integrins
Ion channels
Ion Channels - metabolism
Mathematical analysis
Mathematical models
Matrix methods
Mechanotransduction
Mechanotransduction, Cellular
Myofibroblasts - metabolism
Physical Sciences
Signal Transduction - physiology
Signaling
title Matrix-transmitted paratensile signaling enables myofibroblast–fibroblast cross talk in fibrosis expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-transmitted%20paratensile%20signaling%20enables%20myofibroblast%E2%80%93fibroblast%20cross%20talk%20in%20fibrosis%20expansion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Longwei&rft.date=2020-05-19&rft.volume=117&rft.issue=20&rft.spage=10832&rft.epage=10838&rft.pages=10832-10838&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1910650117&rft_dat=%3Cjstor_pubme%3E26931144%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405846552&rft_id=info:pmid/32358190&rft_jstor_id=26931144&rfr_iscdi=true