Prohibitin levels regulate OMA1 activity and turnover in neurons
The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2020-06, Vol.27 (6), p.1896-1906 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1906 |
---|---|
container_issue | 6 |
container_start_page | 1896 |
container_title | Cell death and differentiation |
container_volume | 27 |
creator | Anderson, Corey J. Kahl, Anja Fruitman, Hannah Qian, Liping Zhou, Ping Manfredi, Giovanni Iadecola, Costantino |
description | The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c (cyt c) in mitochondrial cristae. Cleavage of functional long OPA1 (L-OPA1) isoforms by OMA1 inactivates mitochondrial fusion and primes apoptosis. OPA1 cleavage is regulated by the prohibitin (PHB) complex, a heteromeric, ring-shaped mitochondrial inner membrane scaffolding complex composed of PHB1 and PHB2. In neurons, PHB plays a protective role against various stresses, and PHB deletion destabilizes OPA1 causing neurodegeneration. While deletion of OMA1 prevents OPA1 destabilization and attenuates neurodegeneration in PHB2 KO mice, how PHB levels regulate OMA1 is still unknown. Here, we investigate the effects of modulating neuronal PHB levels on OMA1 stability and OPA1 cleavage. We demonstrate that PHB promotes OMA1 turnover, effectively decreasing the pool of OMA1. Further, we show that OMA1 binds to cardiolipin (CL), a major mitochondrial phospholipid. CL binding promotes OMA1 turnover, as we show that deleting the CL-binding domain of OMA1 decreases its turnover rate. Since PHB is known to stabilize CL, these data suggest that PHB modulates OMA1 through CL. Furthermore, we show that PHB decreases cyt c release induced by tBID and attenuates caspase 9 activation in response to hypoxic stress in neurons. Taken together, our results suggest that PHB-mediated CL stabilization regulates stress responses and cell death through OMA1 turnover and cyt c release. |
doi_str_mv | 10.1038/s41418-019-0469-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405840601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-147b393a7178c094f20a5c7fc42adc85d90fea657c4843ac0a2238126eb6844a3</originalsourceid><addsrcrecordid>eNp9kU1PVTEQhhuikQ_5AWzMSdywOTptp18bIyGKJBhcyLrp7e25lJzbYnvOTfj3lFxEMNHNdJJ55u28eQk5ovCBAtcfK1KkugdqekBpetwhexSV7AUCf9V6LqA3gGqX7Nd6AwBSGfmG7HKqqaFC75HPP0q-jos4xdSNYRPG2pWwmkc3he7y-wntnJ_iJk53nUvLbppLyptQukanMJec6lvyenBjDYeP7wG5-vrl5-m3_uLy7Pz05KL3aPTUt7MW3HCnqNIeDA4MnPBq8Mjc0muxNDAEJ4XyqJE7D44xrimTYSE1ouMH5NNW93ZerMPShzQVN9rbEteu3Nnson05SfHarvLGKoaomGkCx48CJf-aQ53sOlYfxtGlkOdqGWccNQimG_r-L_QmN-fNnmWoBHApWvkvBUIjSKCNolvKl1xrCcPTyRTsQ4p2m6JtKdqHFC22nXfPvT5t_I6tAWwL1DZKq1D-fP1v1XvHS6ZT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405840601</pqid></control><display><type>article</type><title>Prohibitin levels regulate OMA1 activity and turnover in neurons</title><source>PubMed Central Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Anderson, Corey J. ; Kahl, Anja ; Fruitman, Hannah ; Qian, Liping ; Zhou, Ping ; Manfredi, Giovanni ; Iadecola, Costantino</creator><creatorcontrib>Anderson, Corey J. ; Kahl, Anja ; Fruitman, Hannah ; Qian, Liping ; Zhou, Ping ; Manfredi, Giovanni ; Iadecola, Costantino</creatorcontrib><description>The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c (cyt c) in mitochondrial cristae. Cleavage of functional long OPA1 (L-OPA1) isoforms by OMA1 inactivates mitochondrial fusion and primes apoptosis. OPA1 cleavage is regulated by the prohibitin (PHB) complex, a heteromeric, ring-shaped mitochondrial inner membrane scaffolding complex composed of PHB1 and PHB2. In neurons, PHB plays a protective role against various stresses, and PHB deletion destabilizes OPA1 causing neurodegeneration. While deletion of OMA1 prevents OPA1 destabilization and attenuates neurodegeneration in PHB2 KO mice, how PHB levels regulate OMA1 is still unknown. Here, we investigate the effects of modulating neuronal PHB levels on OMA1 stability and OPA1 cleavage. We demonstrate that PHB promotes OMA1 turnover, effectively decreasing the pool of OMA1. Further, we show that OMA1 binds to cardiolipin (CL), a major mitochondrial phospholipid. CL binding promotes OMA1 turnover, as we show that deleting the CL-binding domain of OMA1 decreases its turnover rate. Since PHB is known to stabilize CL, these data suggest that PHB modulates OMA1 through CL. Furthermore, we show that PHB decreases cyt c release induced by tBID and attenuates caspase 9 activation in response to hypoxic stress in neurons. Taken together, our results suggest that PHB-mediated CL stabilization regulates stress responses and cell death through OMA1 turnover and cyt c release.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-019-0469-4</identifier><identifier>PMID: 31819158</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 42/109 ; 42/35 ; 42/44 ; 631/378 ; 64/60 ; 692/699/375 ; 82/80 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cardiolipin ; Caspase-9 ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cellular stress response ; Cristae ; Cytochrome c ; Diphosphatidylglycerol ; Guanosine triphosphatases ; Hypoxia ; Isoforms ; Life Sciences ; Membrane fusion ; Mitochondria ; Neurodegeneration ; Phospholipids ; Prohibitin ; Stem Cells ; Structure-function relationships</subject><ispartof>Cell death and differentiation, 2020-06, Vol.27 (6), p.1896-1906</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2019</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-147b393a7178c094f20a5c7fc42adc85d90fea657c4843ac0a2238126eb6844a3</citedby><cites>FETCH-LOGICAL-c498t-147b393a7178c094f20a5c7fc42adc85d90fea657c4843ac0a2238126eb6844a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244729/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244729/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31819158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Corey J.</creatorcontrib><creatorcontrib>Kahl, Anja</creatorcontrib><creatorcontrib>Fruitman, Hannah</creatorcontrib><creatorcontrib>Qian, Liping</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Manfredi, Giovanni</creatorcontrib><creatorcontrib>Iadecola, Costantino</creatorcontrib><title>Prohibitin levels regulate OMA1 activity and turnover in neurons</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c (cyt c) in mitochondrial cristae. Cleavage of functional long OPA1 (L-OPA1) isoforms by OMA1 inactivates mitochondrial fusion and primes apoptosis. OPA1 cleavage is regulated by the prohibitin (PHB) complex, a heteromeric, ring-shaped mitochondrial inner membrane scaffolding complex composed of PHB1 and PHB2. In neurons, PHB plays a protective role against various stresses, and PHB deletion destabilizes OPA1 causing neurodegeneration. While deletion of OMA1 prevents OPA1 destabilization and attenuates neurodegeneration in PHB2 KO mice, how PHB levels regulate OMA1 is still unknown. Here, we investigate the effects of modulating neuronal PHB levels on OMA1 stability and OPA1 cleavage. We demonstrate that PHB promotes OMA1 turnover, effectively decreasing the pool of OMA1. Further, we show that OMA1 binds to cardiolipin (CL), a major mitochondrial phospholipid. CL binding promotes OMA1 turnover, as we show that deleting the CL-binding domain of OMA1 decreases its turnover rate. Since PHB is known to stabilize CL, these data suggest that PHB modulates OMA1 through CL. Furthermore, we show that PHB decreases cyt c release induced by tBID and attenuates caspase 9 activation in response to hypoxic stress in neurons. Taken together, our results suggest that PHB-mediated CL stabilization regulates stress responses and cell death through OMA1 turnover and cyt c release.</description><subject>13/1</subject><subject>13/106</subject><subject>42/109</subject><subject>42/35</subject><subject>42/44</subject><subject>631/378</subject><subject>64/60</subject><subject>692/699/375</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cardiolipin</subject><subject>Caspase-9</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cellular stress response</subject><subject>Cristae</subject><subject>Cytochrome c</subject><subject>Diphosphatidylglycerol</subject><subject>Guanosine triphosphatases</subject><subject>Hypoxia</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Membrane fusion</subject><subject>Mitochondria</subject><subject>Neurodegeneration</subject><subject>Phospholipids</subject><subject>Prohibitin</subject><subject>Stem Cells</subject><subject>Structure-function relationships</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PVTEQhhuikQ_5AWzMSdywOTptp18bIyGKJBhcyLrp7e25lJzbYnvOTfj3lFxEMNHNdJJ55u28eQk5ovCBAtcfK1KkugdqekBpetwhexSV7AUCf9V6LqA3gGqX7Nd6AwBSGfmG7HKqqaFC75HPP0q-jos4xdSNYRPG2pWwmkc3he7y-wntnJ_iJk53nUvLbppLyptQukanMJec6lvyenBjDYeP7wG5-vrl5-m3_uLy7Pz05KL3aPTUt7MW3HCnqNIeDA4MnPBq8Mjc0muxNDAEJ4XyqJE7D44xrimTYSE1ouMH5NNW93ZerMPShzQVN9rbEteu3Nnson05SfHarvLGKoaomGkCx48CJf-aQ53sOlYfxtGlkOdqGWccNQimG_r-L_QmN-fNnmWoBHApWvkvBUIjSKCNolvKl1xrCcPTyRTsQ4p2m6JtKdqHFC22nXfPvT5t_I6tAWwL1DZKq1D-fP1v1XvHS6ZT</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Anderson, Corey J.</creator><creator>Kahl, Anja</creator><creator>Fruitman, Hannah</creator><creator>Qian, Liping</creator><creator>Zhou, Ping</creator><creator>Manfredi, Giovanni</creator><creator>Iadecola, Costantino</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200601</creationdate><title>Prohibitin levels regulate OMA1 activity and turnover in neurons</title><author>Anderson, Corey J. ; Kahl, Anja ; Fruitman, Hannah ; Qian, Liping ; Zhou, Ping ; Manfredi, Giovanni ; Iadecola, Costantino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-147b393a7178c094f20a5c7fc42adc85d90fea657c4843ac0a2238126eb6844a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/106</topic><topic>42/109</topic><topic>42/35</topic><topic>42/44</topic><topic>631/378</topic><topic>64/60</topic><topic>692/699/375</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cardiolipin</topic><topic>Caspase-9</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cellular stress response</topic><topic>Cristae</topic><topic>Cytochrome c</topic><topic>Diphosphatidylglycerol</topic><topic>Guanosine triphosphatases</topic><topic>Hypoxia</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Membrane fusion</topic><topic>Mitochondria</topic><topic>Neurodegeneration</topic><topic>Phospholipids</topic><topic>Prohibitin</topic><topic>Stem Cells</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Corey J.</creatorcontrib><creatorcontrib>Kahl, Anja</creatorcontrib><creatorcontrib>Fruitman, Hannah</creatorcontrib><creatorcontrib>Qian, Liping</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Manfredi, Giovanni</creatorcontrib><creatorcontrib>Iadecola, Costantino</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Corey J.</au><au>Kahl, Anja</au><au>Fruitman, Hannah</au><au>Qian, Liping</au><au>Zhou, Ping</au><au>Manfredi, Giovanni</au><au>Iadecola, Costantino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prohibitin levels regulate OMA1 activity and turnover in neurons</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>27</volume><issue>6</issue><spage>1896</spage><epage>1906</epage><pages>1896-1906</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c (cyt c) in mitochondrial cristae. Cleavage of functional long OPA1 (L-OPA1) isoforms by OMA1 inactivates mitochondrial fusion and primes apoptosis. OPA1 cleavage is regulated by the prohibitin (PHB) complex, a heteromeric, ring-shaped mitochondrial inner membrane scaffolding complex composed of PHB1 and PHB2. In neurons, PHB plays a protective role against various stresses, and PHB deletion destabilizes OPA1 causing neurodegeneration. While deletion of OMA1 prevents OPA1 destabilization and attenuates neurodegeneration in PHB2 KO mice, how PHB levels regulate OMA1 is still unknown. Here, we investigate the effects of modulating neuronal PHB levels on OMA1 stability and OPA1 cleavage. We demonstrate that PHB promotes OMA1 turnover, effectively decreasing the pool of OMA1. Further, we show that OMA1 binds to cardiolipin (CL), a major mitochondrial phospholipid. CL binding promotes OMA1 turnover, as we show that deleting the CL-binding domain of OMA1 decreases its turnover rate. Since PHB is known to stabilize CL, these data suggest that PHB modulates OMA1 through CL. Furthermore, we show that PHB decreases cyt c release induced by tBID and attenuates caspase 9 activation in response to hypoxic stress in neurons. Taken together, our results suggest that PHB-mediated CL stabilization regulates stress responses and cell death through OMA1 turnover and cyt c release.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31819158</pmid><doi>10.1038/s41418-019-0469-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2020-06, Vol.27 (6), p.1896-1906 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244729 |
source | PubMed Central Free; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 13/1 13/106 42/109 42/35 42/44 631/378 64/60 692/699/375 82/80 Apoptosis Biochemistry Biomedical and Life Sciences Cardiolipin Caspase-9 Cell Biology Cell Cycle Analysis Cell death Cellular stress response Cristae Cytochrome c Diphosphatidylglycerol Guanosine triphosphatases Hypoxia Isoforms Life Sciences Membrane fusion Mitochondria Neurodegeneration Phospholipids Prohibitin Stem Cells Structure-function relationships |
title | Prohibitin levels regulate OMA1 activity and turnover in neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prohibitin%20levels%20regulate%20OMA1%20activity%20and%20turnover%20in%20neurons&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Anderson,%20Corey%20J.&rft.date=2020-06-01&rft.volume=27&rft.issue=6&rft.spage=1896&rft.epage=1906&rft.pages=1896-1906&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-019-0469-4&rft_dat=%3Cproquest_pubme%3E2405840601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405840601&rft_id=info:pmid/31819158&rfr_iscdi=true |