Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction
This work aimed to use artificial intelligence to predict subjective refraction from wavefront aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms were trained to...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-05, Vol.10 (1), p.8565, Article 8565 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 8565 |
container_title | Scientific reports |
container_volume | 10 |
creator | Rampat, Radhika Debellemanière, Guillaume Malet, Jacques Gatinel, Damien |
description | This work aimed to use artificial intelligence to predict subjective refraction from wavefront aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms were trained to predict each power vector using data from 3729 eyes. The model was validated by predicting subjective refraction power vectors of 350 other eyes, unknown to the model. The machine learning models were significantly better than the paraxial matching method for producing a spectacle correction, resulting in a mean absolute error of 0.301 ± 0.252 Diopters (D) for the M vector, 0.120 ± 0.094 D for the J0 vector and 0.094 ± 0.084 D for the J45 vector. Our results suggest that subjective refraction can be accurately and precisely predicted from novel polynomial wavefront data using machine learning algorithms. We anticipate that the combination of machine learning and aberrometry based on this novel wavefront decomposition basis will aid the development of refined algorithms which could become a new gold standard to predict refraction objectively. |
doi_str_mv | 10.1038/s41598-020-65417-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406308292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c1c1a132c89003ecda3612265a1e6e74f40b5ebe2534a6e56c0463839863aac03</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoKto_4EICbtyM5j0zG0HEF4iK1nVI0zs1ZZpoMlPovze1vhdmkwv3u-few0Foj5IjSnh1nASVdVUQRgolBS2LxRraZkTIgnHG1n_UW2iQ0pTkJ1ktaL2JtjgTQihJttHwKTk_waexc42zzrT42nfQtm4C3gI2foxvwxxafB_ahQ-zTCTcBXwfYexshx_70RRs5-aAH6CJJpfB76KNJnMw-Ph30NPF-fDsqri5u7w-O70prChFV1hqqaGc2aomhIMdG64oY0oaCgpK0QgykjACJrkwCqSyRChe8bpS3BhL-A46Wem-9KMZjC34LppWv0Q3M3Ghg3H6d8e7Zz0Jc11m_yWrssDhh0AMrz2kTs9cstm-8RD6pJkgipOK1SyjB3_Qaeijz_aWlKwEEXx5EVtRNoaUIjRfx1Cil7npVW4656bfc9OLPLT_08bXyGdKGeArIOWWn0D83v2P7ButWKP8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405840430</pqid></control><display><type>article</type><title>Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Rampat, Radhika ; Debellemanière, Guillaume ; Malet, Jacques ; Gatinel, Damien</creator><creatorcontrib>Rampat, Radhika ; Debellemanière, Guillaume ; Malet, Jacques ; Gatinel, Damien</creatorcontrib><description>This work aimed to use artificial intelligence to predict subjective refraction from wavefront aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms were trained to predict each power vector using data from 3729 eyes. The model was validated by predicting subjective refraction power vectors of 350 other eyes, unknown to the model. The machine learning models were significantly better than the paraxial matching method for producing a spectacle correction, resulting in a mean absolute error of 0.301 ± 0.252 Diopters (D) for the M vector, 0.120 ± 0.094 D for the J0 vector and 0.094 ± 0.084 D for the J45 vector. Our results suggest that subjective refraction can be accurately and precisely predicted from novel polynomial wavefront data using machine learning algorithms. We anticipate that the combination of machine learning and aberrometry based on this novel wavefront decomposition basis will aid the development of refined algorithms which could become a new gold standard to predict refraction objectively.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-65417-y</identifier><identifier>PMID: 32444650</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 639/624/1107/510 ; Algorithms ; Artificial intelligence ; Decomposition ; Humanities and Social Sciences ; Learning algorithms ; Machine learning ; multidisciplinary ; Refraction ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8565, Article 8565</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c1c1a132c89003ecda3612265a1e6e74f40b5ebe2534a6e56c0463839863aac03</citedby><cites>FETCH-LOGICAL-c474t-c1c1a132c89003ecda3612265a1e6e74f40b5ebe2534a6e56c0463839863aac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244728/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32444650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rampat, Radhika</creatorcontrib><creatorcontrib>Debellemanière, Guillaume</creatorcontrib><creatorcontrib>Malet, Jacques</creatorcontrib><creatorcontrib>Gatinel, Damien</creatorcontrib><title>Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This work aimed to use artificial intelligence to predict subjective refraction from wavefront aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms were trained to predict each power vector using data from 3729 eyes. The model was validated by predicting subjective refraction power vectors of 350 other eyes, unknown to the model. The machine learning models were significantly better than the paraxial matching method for producing a spectacle correction, resulting in a mean absolute error of 0.301 ± 0.252 Diopters (D) for the M vector, 0.120 ± 0.094 D for the J0 vector and 0.094 ± 0.084 D for the J45 vector. Our results suggest that subjective refraction can be accurately and precisely predicted from novel polynomial wavefront data using machine learning algorithms. We anticipate that the combination of machine learning and aberrometry based on this novel wavefront decomposition basis will aid the development of refined algorithms which could become a new gold standard to predict refraction objectively.</description><subject>631/114/1305</subject><subject>639/624/1107/510</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Decomposition</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Refraction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoKto_4EICbtyM5j0zG0HEF4iK1nVI0zs1ZZpoMlPovze1vhdmkwv3u-few0Foj5IjSnh1nASVdVUQRgolBS2LxRraZkTIgnHG1n_UW2iQ0pTkJ1ktaL2JtjgTQihJttHwKTk_waexc42zzrT42nfQtm4C3gI2foxvwxxafB_ahQ-zTCTcBXwfYexshx_70RRs5-aAH6CJJpfB76KNJnMw-Ph30NPF-fDsqri5u7w-O70prChFV1hqqaGc2aomhIMdG64oY0oaCgpK0QgykjACJrkwCqSyRChe8bpS3BhL-A46Wem-9KMZjC34LppWv0Q3M3Ghg3H6d8e7Zz0Jc11m_yWrssDhh0AMrz2kTs9cstm-8RD6pJkgipOK1SyjB3_Qaeijz_aWlKwEEXx5EVtRNoaUIjRfx1Cil7npVW4656bfc9OLPLT_08bXyGdKGeArIOWWn0D83v2P7ButWKP8</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Rampat, Radhika</creator><creator>Debellemanière, Guillaume</creator><creator>Malet, Jacques</creator><creator>Gatinel, Damien</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200522</creationdate><title>Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction</title><author>Rampat, Radhika ; Debellemanière, Guillaume ; Malet, Jacques ; Gatinel, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c1c1a132c89003ecda3612265a1e6e74f40b5ebe2534a6e56c0463839863aac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/1305</topic><topic>639/624/1107/510</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Decomposition</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Refraction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rampat, Radhika</creatorcontrib><creatorcontrib>Debellemanière, Guillaume</creatorcontrib><creatorcontrib>Malet, Jacques</creatorcontrib><creatorcontrib>Gatinel, Damien</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rampat, Radhika</au><au>Debellemanière, Guillaume</au><au>Malet, Jacques</au><au>Gatinel, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8565</spage><pages>8565-</pages><artnum>8565</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This work aimed to use artificial intelligence to predict subjective refraction from wavefront aberrometry data processed with a novel polynomial decomposition basis. Subjective refraction was converted to power vectors (M, J0, J45). Three gradient boosted trees (XGBoost) algorithms were trained to predict each power vector using data from 3729 eyes. The model was validated by predicting subjective refraction power vectors of 350 other eyes, unknown to the model. The machine learning models were significantly better than the paraxial matching method for producing a spectacle correction, resulting in a mean absolute error of 0.301 ± 0.252 Diopters (D) for the M vector, 0.120 ± 0.094 D for the J0 vector and 0.094 ± 0.084 D for the J45 vector. Our results suggest that subjective refraction can be accurately and precisely predicted from novel polynomial wavefront data using machine learning algorithms. We anticipate that the combination of machine learning and aberrometry based on this novel wavefront decomposition basis will aid the development of refined algorithms which could become a new gold standard to predict refraction objectively.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32444650</pmid><doi>10.1038/s41598-020-65417-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-05, Vol.10 (1), p.8565, Article 8565 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244728 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/114/1305 639/624/1107/510 Algorithms Artificial intelligence Decomposition Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Refraction Science Science (multidisciplinary) |
title | Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Artificial%20Intelligence%20and%20Novel%20Polynomials%20to%20Predict%20Subjective%20Refraction&rft.jtitle=Scientific%20reports&rft.au=Rampat,%20Radhika&rft.date=2020-05-22&rft.volume=10&rft.issue=1&rft.spage=8565&rft.pages=8565-&rft.artnum=8565&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-65417-y&rft_dat=%3Cproquest_pubme%3E2406308292%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405840430&rft_id=info:pmid/32444650&rfr_iscdi=true |