Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C

The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphopro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-05, Vol.3 (1), p.253, Article 253
Hauptverfasser: Reimann, Lena, Schwäble, Anja N., Fricke, Anna L., Mühlhäuser, Wignand W. D., Leber, Yvonne, Lohanadan, Keerthika, Puchinger, Martin G., Schäuble, Sascha, Faessler, Erik, Wiese, Heike, Reichenbach, Christa, Knapp, Bettina, Peikert, Christian D., Drepper, Friedel, Hahn, Udo, Kreutz, Clemens, van der Ven, Peter F. M., Radziwill, Gerald, Djinović-Carugo, Kristina, Fürst, Dieter O., Warscheid, Bettina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 253
container_title Communications biology
container_volume 3
creator Reimann, Lena
Schwäble, Anja N.
Fricke, Anna L.
Mühlhäuser, Wignand W. D.
Leber, Yvonne
Lohanadan, Keerthika
Puchinger, Martin G.
Schäuble, Sascha
Faessler, Erik
Wiese, Heike
Reichenbach, Christa
Knapp, Bettina
Peikert, Christian D.
Drepper, Friedel
Hahn, Udo
Kreutz, Clemens
van der Ven, Peter F. M.
Radziwill, Gerald
Djinović-Carugo, Kristina
Fürst, Dieter O.
Warscheid, Bettina
description The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. Reimann, Schwäble et al. perform quantitative proteomics to study PI3K/Akt signaling in contracting myotubes. They identify a dual-site phosphorylation motif in the actin cross-linker and signaling adaptor filamin C, which regulates its degradation and mobility, suggesting the importance of dual phosphorylation for filamin C function in striated muscle cells.
doi_str_mv 10.1038/s42003-020-0982-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405840071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-a22179377b8ad5301d09192a054445772d1020895fe8e4ce5eaa4aaee93ab80b3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhSMEolXpA7BBltiwMfgvN_EGCV1RuNKV6ALW1iSe5LpK7GAnqH0FnhpHKaUgsfJI883xnDlF8ZKzt5zJ-l1SgjFJmWCU6VrQ8klxLqTWVO6UePqoPisuU7phjHGt9U6q58WZFEqpqq7Pi5_Xp5CmU5himDGMrk3EWfSz6xwmYhcYaHIzkmnD4t0AswueOE_AE7yd0Vu0pIEUppMbXEvGkIdJxH5ZUd-Tq8PxcM3piNbBnFmLfQS7yYSOdG6A0Xm6f1E862BIeHn_XhTfrj5-3X-mxy-fDvsPR9qqis0UhOCVllXV1GBLybhlmmsBrMyeyqoSlueb1LrssEbVYokACgBRS2hq1siL4v2mOy1NXqrNbiMMZopuhHhnAjjzd8e7k-nDD1Plq5WcZ4E39wIxfF8wzWZ0qcVhAI9hSUYotpNsV-9kRl__g96EJfpsb6XKWjFWrYJ8o9oYUorYPSzDmVnDNlvYJhsza9imzDOvHrt4mPgdbQbEBqTc8j3GP1__X_UXQgu3UA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405840071</pqid></control><display><type>article</type><title>Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Reimann, Lena ; Schwäble, Anja N. ; Fricke, Anna L. ; Mühlhäuser, Wignand W. D. ; Leber, Yvonne ; Lohanadan, Keerthika ; Puchinger, Martin G. ; Schäuble, Sascha ; Faessler, Erik ; Wiese, Heike ; Reichenbach, Christa ; Knapp, Bettina ; Peikert, Christian D. ; Drepper, Friedel ; Hahn, Udo ; Kreutz, Clemens ; van der Ven, Peter F. M. ; Radziwill, Gerald ; Djinović-Carugo, Kristina ; Fürst, Dieter O. ; Warscheid, Bettina</creator><creatorcontrib>Reimann, Lena ; Schwäble, Anja N. ; Fricke, Anna L. ; Mühlhäuser, Wignand W. D. ; Leber, Yvonne ; Lohanadan, Keerthika ; Puchinger, Martin G. ; Schäuble, Sascha ; Faessler, Erik ; Wiese, Heike ; Reichenbach, Christa ; Knapp, Bettina ; Peikert, Christian D. ; Drepper, Friedel ; Hahn, Udo ; Kreutz, Clemens ; van der Ven, Peter F. M. ; Radziwill, Gerald ; Djinović-Carugo, Kristina ; Fürst, Dieter O. ; Warscheid, Bettina</creatorcontrib><description>The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. Reimann, Schwäble et al. perform quantitative proteomics to study PI3K/Akt signaling in contracting myotubes. They identify a dual-site phosphorylation motif in the actin cross-linker and signaling adaptor filamin C, which regulates its degradation and mobility, suggesting the importance of dual phosphorylation for filamin C function in striated muscle cells.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0982-5</identifier><identifier>PMID: 32444788</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13/1 ; 13/109 ; 13/95 ; 14/35 ; 631/1647/296 ; 631/45/612/1248 ; 631/80/458/1733 ; 82/16 ; 82/58 ; 82/80 ; 82/83 ; Actin ; AKT protein ; Amino Acid Motifs ; Biology ; Biomedical and Life Sciences ; Carrier Proteins - metabolism ; Cytoskeletal Proteins - metabolism ; Degradation ; Filamins - metabolism ; HEK293 Cells ; Humans ; Immunoglobulins ; Life Sciences ; Muscle Development ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - metabolism ; Musculoskeletal system ; Myotubes ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoproteins - metabolism ; Phosphorylation ; Protein Binding ; Protein kinase C ; Proteolysis ; Proteome - analysis ; Proteome - metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction ; Skeletal muscle</subject><ispartof>Communications biology, 2020-05, Vol.3 (1), p.253, Article 253</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-a22179377b8ad5301d09192a054445772d1020895fe8e4ce5eaa4aaee93ab80b3</citedby><cites>FETCH-LOGICAL-c470t-a22179377b8ad5301d09192a054445772d1020895fe8e4ce5eaa4aaee93ab80b3</cites><orcidid>0000-0002-0187-3650 ; 0000-0002-8796-5766 ; 0000-0003-0252-2972 ; 0000-0003-1193-5103 ; 0000-0001-5465-5895 ; 0000-0002-8941-3762 ; 0000-0001-5096-1975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244511/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244511/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32444788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reimann, Lena</creatorcontrib><creatorcontrib>Schwäble, Anja N.</creatorcontrib><creatorcontrib>Fricke, Anna L.</creatorcontrib><creatorcontrib>Mühlhäuser, Wignand W. D.</creatorcontrib><creatorcontrib>Leber, Yvonne</creatorcontrib><creatorcontrib>Lohanadan, Keerthika</creatorcontrib><creatorcontrib>Puchinger, Martin G.</creatorcontrib><creatorcontrib>Schäuble, Sascha</creatorcontrib><creatorcontrib>Faessler, Erik</creatorcontrib><creatorcontrib>Wiese, Heike</creatorcontrib><creatorcontrib>Reichenbach, Christa</creatorcontrib><creatorcontrib>Knapp, Bettina</creatorcontrib><creatorcontrib>Peikert, Christian D.</creatorcontrib><creatorcontrib>Drepper, Friedel</creatorcontrib><creatorcontrib>Hahn, Udo</creatorcontrib><creatorcontrib>Kreutz, Clemens</creatorcontrib><creatorcontrib>van der Ven, Peter F. M.</creatorcontrib><creatorcontrib>Radziwill, Gerald</creatorcontrib><creatorcontrib>Djinović-Carugo, Kristina</creatorcontrib><creatorcontrib>Fürst, Dieter O.</creatorcontrib><creatorcontrib>Warscheid, Bettina</creatorcontrib><title>Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. Reimann, Schwäble et al. perform quantitative proteomics to study PI3K/Akt signaling in contracting myotubes. They identify a dual-site phosphorylation motif in the actin cross-linker and signaling adaptor filamin C, which regulates its degradation and mobility, suggesting the importance of dual phosphorylation for filamin C function in striated muscle cells.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13/1</subject><subject>13/109</subject><subject>13/95</subject><subject>14/35</subject><subject>631/1647/296</subject><subject>631/45/612/1248</subject><subject>631/80/458/1733</subject><subject>82/16</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Actin</subject><subject>AKT protein</subject><subject>Amino Acid Motifs</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Degradation</subject><subject>Filamins - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Life Sciences</subject><subject>Muscle Development</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein kinase C</subject><subject>Proteolysis</subject><subject>Proteome - analysis</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1TAQhSMEolXpA7BBltiwMfgvN_EGCV1RuNKV6ALW1iSe5LpK7GAnqH0FnhpHKaUgsfJI883xnDlF8ZKzt5zJ-l1SgjFJmWCU6VrQ8klxLqTWVO6UePqoPisuU7phjHGt9U6q58WZFEqpqq7Pi5_Xp5CmU5himDGMrk3EWfSz6xwmYhcYaHIzkmnD4t0AswueOE_AE7yd0Vu0pIEUppMbXEvGkIdJxH5ZUd-Tq8PxcM3piNbBnFmLfQS7yYSOdG6A0Xm6f1E862BIeHn_XhTfrj5-3X-mxy-fDvsPR9qqis0UhOCVllXV1GBLybhlmmsBrMyeyqoSlueb1LrssEbVYokACgBRS2hq1siL4v2mOy1NXqrNbiMMZopuhHhnAjjzd8e7k-nDD1Plq5WcZ4E39wIxfF8wzWZ0qcVhAI9hSUYotpNsV-9kRl__g96EJfpsb6XKWjFWrYJ8o9oYUorYPSzDmVnDNlvYJhsza9imzDOvHrt4mPgdbQbEBqTc8j3GP1__X_UXQgu3UA</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Reimann, Lena</creator><creator>Schwäble, Anja N.</creator><creator>Fricke, Anna L.</creator><creator>Mühlhäuser, Wignand W. D.</creator><creator>Leber, Yvonne</creator><creator>Lohanadan, Keerthika</creator><creator>Puchinger, Martin G.</creator><creator>Schäuble, Sascha</creator><creator>Faessler, Erik</creator><creator>Wiese, Heike</creator><creator>Reichenbach, Christa</creator><creator>Knapp, Bettina</creator><creator>Peikert, Christian D.</creator><creator>Drepper, Friedel</creator><creator>Hahn, Udo</creator><creator>Kreutz, Clemens</creator><creator>van der Ven, Peter F. M.</creator><creator>Radziwill, Gerald</creator><creator>Djinović-Carugo, Kristina</creator><creator>Fürst, Dieter O.</creator><creator>Warscheid, Bettina</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0187-3650</orcidid><orcidid>https://orcid.org/0000-0002-8796-5766</orcidid><orcidid>https://orcid.org/0000-0003-0252-2972</orcidid><orcidid>https://orcid.org/0000-0003-1193-5103</orcidid><orcidid>https://orcid.org/0000-0001-5465-5895</orcidid><orcidid>https://orcid.org/0000-0002-8941-3762</orcidid><orcidid>https://orcid.org/0000-0001-5096-1975</orcidid></search><sort><creationdate>20200522</creationdate><title>Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C</title><author>Reimann, Lena ; Schwäble, Anja N. ; Fricke, Anna L. ; Mühlhäuser, Wignand W. D. ; Leber, Yvonne ; Lohanadan, Keerthika ; Puchinger, Martin G. ; Schäuble, Sascha ; Faessler, Erik ; Wiese, Heike ; Reichenbach, Christa ; Knapp, Bettina ; Peikert, Christian D. ; Drepper, Friedel ; Hahn, Udo ; Kreutz, Clemens ; van der Ven, Peter F. M. ; Radziwill, Gerald ; Djinović-Carugo, Kristina ; Fürst, Dieter O. ; Warscheid, Bettina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-a22179377b8ad5301d09192a054445772d1020895fe8e4ce5eaa4aaee93ab80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13/1</topic><topic>13/109</topic><topic>13/95</topic><topic>14/35</topic><topic>631/1647/296</topic><topic>631/45/612/1248</topic><topic>631/80/458/1733</topic><topic>82/16</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Actin</topic><topic>AKT protein</topic><topic>Amino Acid Motifs</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Degradation</topic><topic>Filamins - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Life Sciences</topic><topic>Muscle Development</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein kinase C</topic><topic>Proteolysis</topic><topic>Proteome - analysis</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimann, Lena</creatorcontrib><creatorcontrib>Schwäble, Anja N.</creatorcontrib><creatorcontrib>Fricke, Anna L.</creatorcontrib><creatorcontrib>Mühlhäuser, Wignand W. D.</creatorcontrib><creatorcontrib>Leber, Yvonne</creatorcontrib><creatorcontrib>Lohanadan, Keerthika</creatorcontrib><creatorcontrib>Puchinger, Martin G.</creatorcontrib><creatorcontrib>Schäuble, Sascha</creatorcontrib><creatorcontrib>Faessler, Erik</creatorcontrib><creatorcontrib>Wiese, Heike</creatorcontrib><creatorcontrib>Reichenbach, Christa</creatorcontrib><creatorcontrib>Knapp, Bettina</creatorcontrib><creatorcontrib>Peikert, Christian D.</creatorcontrib><creatorcontrib>Drepper, Friedel</creatorcontrib><creatorcontrib>Hahn, Udo</creatorcontrib><creatorcontrib>Kreutz, Clemens</creatorcontrib><creatorcontrib>van der Ven, Peter F. M.</creatorcontrib><creatorcontrib>Radziwill, Gerald</creatorcontrib><creatorcontrib>Djinović-Carugo, Kristina</creatorcontrib><creatorcontrib>Fürst, Dieter O.</creatorcontrib><creatorcontrib>Warscheid, Bettina</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimann, Lena</au><au>Schwäble, Anja N.</au><au>Fricke, Anna L.</au><au>Mühlhäuser, Wignand W. D.</au><au>Leber, Yvonne</au><au>Lohanadan, Keerthika</au><au>Puchinger, Martin G.</au><au>Schäuble, Sascha</au><au>Faessler, Erik</au><au>Wiese, Heike</au><au>Reichenbach, Christa</au><au>Knapp, Bettina</au><au>Peikert, Christian D.</au><au>Drepper, Friedel</au><au>Hahn, Udo</au><au>Kreutz, Clemens</au><au>van der Ven, Peter F. M.</au><au>Radziwill, Gerald</au><au>Djinović-Carugo, Kristina</au><au>Fürst, Dieter O.</au><au>Warscheid, Bettina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>253</spage><pages>253-</pages><artnum>253</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. Reimann, Schwäble et al. perform quantitative proteomics to study PI3K/Akt signaling in contracting myotubes. They identify a dual-site phosphorylation motif in the actin cross-linker and signaling adaptor filamin C, which regulates its degradation and mobility, suggesting the importance of dual phosphorylation for filamin C function in striated muscle cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32444788</pmid><doi>10.1038/s42003-020-0982-5</doi><orcidid>https://orcid.org/0000-0002-0187-3650</orcidid><orcidid>https://orcid.org/0000-0002-8796-5766</orcidid><orcidid>https://orcid.org/0000-0003-0252-2972</orcidid><orcidid>https://orcid.org/0000-0003-1193-5103</orcidid><orcidid>https://orcid.org/0000-0001-5465-5895</orcidid><orcidid>https://orcid.org/0000-0002-8941-3762</orcidid><orcidid>https://orcid.org/0000-0001-5096-1975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-05, Vol.3 (1), p.253, Article 253
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244511
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects 1-Phosphatidylinositol 3-kinase
13/1
13/109
13/95
14/35
631/1647/296
631/45/612/1248
631/80/458/1733
82/16
82/58
82/80
82/83
Actin
AKT protein
Amino Acid Motifs
Biology
Biomedical and Life Sciences
Carrier Proteins - metabolism
Cytoskeletal Proteins - metabolism
Degradation
Filamins - metabolism
HEK293 Cells
Humans
Immunoglobulins
Life Sciences
Muscle Development
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - metabolism
Musculoskeletal system
Myotubes
Phosphatidylinositol 3-Kinases - metabolism
Phosphoproteins - metabolism
Phosphorylation
Protein Binding
Protein kinase C
Proteolysis
Proteome - analysis
Proteome - metabolism
Proteomics
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction
Skeletal muscle
title Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphoproteomics%20identifies%20dual-site%20phosphorylation%20in%20an%20extended%20basophilic%20motif%20regulating%20FILIP1-mediated%20degradation%20of%20filamin-C&rft.jtitle=Communications%20biology&rft.au=Reimann,%20Lena&rft.date=2020-05-22&rft.volume=3&rft.issue=1&rft.spage=253&rft.pages=253-&rft.artnum=253&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0982-5&rft_dat=%3Cproquest_pubme%3E2405840071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405840071&rft_id=info:pmid/32444788&rfr_iscdi=true