Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms

Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2020-05, Vol.40 (21), p.4103-4115
Hauptverfasser: Wang, Han-Ying, Eguchi, Kohgaku, Yamashita, Takayuki, Takahashi, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4115
container_issue 21
container_start_page 4103
container_title The Journal of neuroscience
container_volume 40
creator Wang, Han-Ying
Eguchi, Kohgaku
Yamashita, Takayuki
Takahashi, Tomoyuki
description Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and , isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.
doi_str_mv 10.1523/jneurosci.2946-19.2020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394885133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-317b12c92449b7a1c491bc8cc6ef78997f1465445f30f4ef57f4cad1079166d43</originalsourceid><addsrcrecordid>eNpdkVtPGzEQhS1EBSnlLyBLfeFlg29rr18qlRDaVBSqFp4tr2OD040d7F3U_fc44iLo00gzZ874-APgCKMprgk9WQU7pJiNnxLJeIXllCCCdsCkTGVFGMK7YIKIQBVngu2DjzmvEEICYbEH9imhRNQUTcDtebL3gw1mrM7sxoalDT087aL5C6OD83_G97qPaYSX23t90iGvfc4-BtiOcJGj64bStPDBa3g26A7-SjaPQW96b-BPa-508HmdP4EPTnfZHj7XA3BzPr-efa8urr4tZl8vKsNR3VcUixYTIwljshUaGyZxaxpjuHWikVI4zHjNWO0ocsy6Wjhm9BIjITHnS0YPwJcn383Qru3SlDhJd2qT_FqnUUXt1ftJ8HfqNj4oUU7ipikGx88GKZaPyb0qeY3tuhIyDlkRKlnT1JjSIv38n3QVhxRKPFUAcMkZkaio-JPKFF45Wff6GIzUlqX6cTm_-X31Z7ZQW5YKS7VlWRaP3kZ5XXuBRx8Bj2-eZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406964290</pqid></control><display><type>article</type><title>Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Han-Ying ; Eguchi, Kohgaku ; Yamashita, Takayuki ; Takahashi, Tomoyuki</creator><creatorcontrib>Wang, Han-Ying ; Eguchi, Kohgaku ; Yamashita, Takayuki ; Takahashi, Tomoyuki</creatorcontrib><description>Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and , isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.2946-19.2020</identifier><identifier>PMID: 32327530</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action potential ; Anesthesia ; Anesthetics ; Blocking ; Brain stem ; Calcium currents ; Calcium influx ; Calcium ions ; Capacitance ; Cerebrum ; Depolarization ; Excitatory postsynaptic potentials ; Exocytosis ; Frequency dependence ; Isoflurane ; Low pass filters ; Machinery ; Neurotransmission ; Rodents ; Spikes ; Surgery ; Synapses</subject><ispartof>The Journal of neuroscience, 2020-05, Vol.40 (21), p.4103-4115</ispartof><rights>Copyright © 2020 Wang et al.</rights><rights>Copyright Society for Neuroscience May 20, 2020</rights><rights>Copyright © 2020 Wang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-317b12c92449b7a1c491bc8cc6ef78997f1465445f30f4ef57f4cad1079166d43</citedby><cites>FETCH-LOGICAL-c605t-317b12c92449b7a1c491bc8cc6ef78997f1465445f30f4ef57f4cad1079166d43</cites><orcidid>0000-0002-1849-9837 ; 0000-0002-3021-7134 ; 0000-0002-8771-7666 ; 0000-0002-6170-2546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244188/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244188/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32327530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Han-Ying</creatorcontrib><creatorcontrib>Eguchi, Kohgaku</creatorcontrib><creatorcontrib>Yamashita, Takayuki</creatorcontrib><creatorcontrib>Takahashi, Tomoyuki</creatorcontrib><title>Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and , isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.</description><subject>Action potential</subject><subject>Anesthesia</subject><subject>Anesthetics</subject><subject>Blocking</subject><subject>Brain stem</subject><subject>Calcium currents</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Capacitance</subject><subject>Cerebrum</subject><subject>Depolarization</subject><subject>Excitatory postsynaptic potentials</subject><subject>Exocytosis</subject><subject>Frequency dependence</subject><subject>Isoflurane</subject><subject>Low pass filters</subject><subject>Machinery</subject><subject>Neurotransmission</subject><subject>Rodents</subject><subject>Spikes</subject><subject>Surgery</subject><subject>Synapses</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkVtPGzEQhS1EBSnlLyBLfeFlg29rr18qlRDaVBSqFp4tr2OD040d7F3U_fc44iLo00gzZ874-APgCKMprgk9WQU7pJiNnxLJeIXllCCCdsCkTGVFGMK7YIKIQBVngu2DjzmvEEICYbEH9imhRNQUTcDtebL3gw1mrM7sxoalDT087aL5C6OD83_G97qPaYSX23t90iGvfc4-BtiOcJGj64bStPDBa3g26A7-SjaPQW96b-BPa-508HmdP4EPTnfZHj7XA3BzPr-efa8urr4tZl8vKsNR3VcUixYTIwljshUaGyZxaxpjuHWikVI4zHjNWO0ocsy6Wjhm9BIjITHnS0YPwJcn383Qru3SlDhJd2qT_FqnUUXt1ftJ8HfqNj4oUU7ipikGx88GKZaPyb0qeY3tuhIyDlkRKlnT1JjSIv38n3QVhxRKPFUAcMkZkaio-JPKFF45Wff6GIzUlqX6cTm_-X31Z7ZQW5YKS7VlWRaP3kZ5XXuBRx8Bj2-eZA</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Wang, Han-Ying</creator><creator>Eguchi, Kohgaku</creator><creator>Yamashita, Takayuki</creator><creator>Takahashi, Tomoyuki</creator><general>Society for Neuroscience</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1849-9837</orcidid><orcidid>https://orcid.org/0000-0002-3021-7134</orcidid><orcidid>https://orcid.org/0000-0002-8771-7666</orcidid><orcidid>https://orcid.org/0000-0002-6170-2546</orcidid></search><sort><creationdate>20200520</creationdate><title>Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms</title><author>Wang, Han-Ying ; Eguchi, Kohgaku ; Yamashita, Takayuki ; Takahashi, Tomoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-317b12c92449b7a1c491bc8cc6ef78997f1465445f30f4ef57f4cad1079166d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action potential</topic><topic>Anesthesia</topic><topic>Anesthetics</topic><topic>Blocking</topic><topic>Brain stem</topic><topic>Calcium currents</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Capacitance</topic><topic>Cerebrum</topic><topic>Depolarization</topic><topic>Excitatory postsynaptic potentials</topic><topic>Exocytosis</topic><topic>Frequency dependence</topic><topic>Isoflurane</topic><topic>Low pass filters</topic><topic>Machinery</topic><topic>Neurotransmission</topic><topic>Rodents</topic><topic>Spikes</topic><topic>Surgery</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Han-Ying</creatorcontrib><creatorcontrib>Eguchi, Kohgaku</creatorcontrib><creatorcontrib>Yamashita, Takayuki</creatorcontrib><creatorcontrib>Takahashi, Tomoyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Han-Ying</au><au>Eguchi, Kohgaku</au><au>Yamashita, Takayuki</au><au>Takahashi, Tomoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2020-05-20</date><risdate>2020</risdate><volume>40</volume><issue>21</issue><spage>4103</spage><epage>4115</epage><pages>4103-4115</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and , isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>32327530</pmid><doi>10.1523/jneurosci.2946-19.2020</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1849-9837</orcidid><orcidid>https://orcid.org/0000-0002-3021-7134</orcidid><orcidid>https://orcid.org/0000-0002-8771-7666</orcidid><orcidid>https://orcid.org/0000-0002-6170-2546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2020-05, Vol.40 (21), p.4103-4115
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7244188
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action potential
Anesthesia
Anesthetics
Blocking
Brain stem
Calcium currents
Calcium influx
Calcium ions
Capacitance
Cerebrum
Depolarization
Excitatory postsynaptic potentials
Exocytosis
Frequency dependence
Isoflurane
Low pass filters
Machinery
Neurotransmission
Rodents
Spikes
Surgery
Synapses
title Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Dependent%20Block%20of%20Excitatory%20Neurotransmission%20by%20Isoflurane%20via%20Dual%20Presynaptic%20Mechanisms&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wang,%20Han-Ying&rft.date=2020-05-20&rft.volume=40&rft.issue=21&rft.spage=4103&rft.epage=4115&rft.pages=4103-4115&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.2946-19.2020&rft_dat=%3Cproquest_pubme%3E2394885133%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406964290&rft_id=info:pmid/32327530&rfr_iscdi=true