Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2020-06, Vol.69 (6), p.1178-1192
Hauptverfasser: Liu, Siming, Promes, Joseph A, Harata, Mikako, Mishra, Akansha, Stephens, Samuel B, Taylor, Eric B, Burand, Jr, Anthony J, Sivitz, William I, Fink, Brian D, Ankrum, James A, Imai, Yumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1192
container_issue 6
container_start_page 1178
container_title Diabetes (New York, N.Y.)
container_volume 69
creator Liu, Siming
Promes, Joseph A
Harata, Mikako
Mishra, Akansha
Stephens, Samuel B
Taylor, Eric B
Burand, Jr, Anthony J
Sivitz, William I
Fink, Brian D
Ankrum, James A
Imai, Yumi
description Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.
doi_str_mv 10.2337/db19-0951
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7243295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393037883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</originalsourceid><addsrcrecordid>eNpdkc1u1DAQxyMEokvhwAsgS1zgELA9WTu-IFXLRysWcaBI3CzHnrSusvbWTiqWF-LOg_BMOLRbPuSD5Zmff5rRv6oeM_qCA8iXrmOqpmrJ7lQLpkDVwOWXu9WCUsZrJpU8qB7kfEEpFeXcrw6AA-OtkIvq-5Hz25iRnCZ_NuwsJu-QrP3WlNpJJoa8x93-3cdExnMkH2LnB__NjD4GEvu57R15neJ2wDETH8jxtDGB_PxRr3AYiiU4skp-9NYMfyzGhxGDCRZnyaddGM3X8pcZssYrHH6L9oqH1b3eDBkf3dyH1ee3b05Xx_X647uT1dG6tg2FsWacCpCdU4r1gLxxdOkYutbarufQAiJ0bMlQOckFE9KwprPSQNcLhUYgHFavrr3bqdugsxjGZAa9TX5j0k5H4_W_neDP9Vm80pI3wNWyCJ7dCFK8nDCPeuOzLSuYgHHKmoMCCrJtoaBP_0Mv4pRCWU_zhgrRMNE2hXp-TdkUc07Y3w7DqJ7j13P8eo6_sE_-nv6W3OcNvwCm8q2m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406641684</pqid></control><display><type>article</type><title>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Siming ; Promes, Joseph A ; Harata, Mikako ; Mishra, Akansha ; Stephens, Samuel B ; Taylor, Eric B ; Burand, Jr, Anthony J ; Sivitz, William I ; Fink, Brian D ; Ankrum, James A ; Imai, Yumi</creator><creatorcontrib>Liu, Siming ; Promes, Joseph A ; Harata, Mikako ; Mishra, Akansha ; Stephens, Samuel B ; Taylor, Eric B ; Burand, Jr, Anthony J ; Sivitz, William I ; Fink, Brian D ; Ankrum, James A ; Imai, Yumi</creatorcontrib><description>Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db19-0951</identifier><identifier>PMID: 32312867</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Animals ; Beta cells ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Down-Regulation ; Gene Expression Regulation, Enzymologic - physiology ; Glucose ; Humans ; Insulin ; Insulin - metabolism ; Insulin secretion ; Insulin-Secreting Cells - physiology ; Islet Studies ; Lipase ; Lipase - genetics ; Lipase - metabolism ; Lipid Droplets - physiology ; Lipids ; Lipolysis ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Oxygen - metabolism ; Oxygen Consumption ; Palmitoylation ; Potassium chloride ; Proteasomes ; Secretion ; SNAP receptors ; Syntaxin ; Syntaxin 1 ; Syntaxin 1 - genetics ; Syntaxin 1 - metabolism ; Triglycerides</subject><ispartof>Diabetes (New York, N.Y.), 2020-06, Vol.69 (6), p.1178-1192</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jun 1, 2020</rights><rights>2020 by the American Diabetes Association 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</citedby><cites>FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</cites><orcidid>0000-0001-5046-4223 ; 0000-0002-6342-130X ; 0000-0002-7829-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32312867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Siming</creatorcontrib><creatorcontrib>Promes, Joseph A</creatorcontrib><creatorcontrib>Harata, Mikako</creatorcontrib><creatorcontrib>Mishra, Akansha</creatorcontrib><creatorcontrib>Stephens, Samuel B</creatorcontrib><creatorcontrib>Taylor, Eric B</creatorcontrib><creatorcontrib>Burand, Jr, Anthony J</creatorcontrib><creatorcontrib>Sivitz, William I</creatorcontrib><creatorcontrib>Fink, Brian D</creatorcontrib><creatorcontrib>Ankrum, James A</creatorcontrib><creatorcontrib>Imai, Yumi</creatorcontrib><title>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.</description><subject>Animals</subject><subject>Beta cells</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Down-Regulation</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Glucose</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Islet Studies</subject><subject>Lipase</subject><subject>Lipase - genetics</subject><subject>Lipase - metabolism</subject><subject>Lipid Droplets - physiology</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Oxygen - metabolism</subject><subject>Oxygen Consumption</subject><subject>Palmitoylation</subject><subject>Potassium chloride</subject><subject>Proteasomes</subject><subject>Secretion</subject><subject>SNAP receptors</subject><subject>Syntaxin</subject><subject>Syntaxin 1</subject><subject>Syntaxin 1 - genetics</subject><subject>Syntaxin 1 - metabolism</subject><subject>Triglycerides</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAQxyMEokvhwAsgS1zgELA9WTu-IFXLRysWcaBI3CzHnrSusvbWTiqWF-LOg_BMOLRbPuSD5Zmff5rRv6oeM_qCA8iXrmOqpmrJ7lQLpkDVwOWXu9WCUsZrJpU8qB7kfEEpFeXcrw6AA-OtkIvq-5Hz25iRnCZ_NuwsJu-QrP3WlNpJJoa8x93-3cdExnMkH2LnB__NjD4GEvu57R15neJ2wDETH8jxtDGB_PxRr3AYiiU4skp-9NYMfyzGhxGDCRZnyaddGM3X8pcZssYrHH6L9oqH1b3eDBkf3dyH1ee3b05Xx_X647uT1dG6tg2FsWacCpCdU4r1gLxxdOkYutbarufQAiJ0bMlQOckFE9KwprPSQNcLhUYgHFavrr3bqdugsxjGZAa9TX5j0k5H4_W_neDP9Vm80pI3wNWyCJ7dCFK8nDCPeuOzLSuYgHHKmoMCCrJtoaBP_0Mv4pRCWU_zhgrRMNE2hXp-TdkUc07Y3w7DqJ7j13P8eo6_sE_-nv6W3OcNvwCm8q2m</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Siming</creator><creator>Promes, Joseph A</creator><creator>Harata, Mikako</creator><creator>Mishra, Akansha</creator><creator>Stephens, Samuel B</creator><creator>Taylor, Eric B</creator><creator>Burand, Jr, Anthony J</creator><creator>Sivitz, William I</creator><creator>Fink, Brian D</creator><creator>Ankrum, James A</creator><creator>Imai, Yumi</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5046-4223</orcidid><orcidid>https://orcid.org/0000-0002-6342-130X</orcidid><orcidid>https://orcid.org/0000-0002-7829-0189</orcidid></search><sort><creationdate>20200601</creationdate><title>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</title><author>Liu, Siming ; Promes, Joseph A ; Harata, Mikako ; Mishra, Akansha ; Stephens, Samuel B ; Taylor, Eric B ; Burand, Jr, Anthony J ; Sivitz, William I ; Fink, Brian D ; Ankrum, James A ; Imai, Yumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Beta cells</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Down-Regulation</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Glucose</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Islet Studies</topic><topic>Lipase</topic><topic>Lipase - genetics</topic><topic>Lipase - metabolism</topic><topic>Lipid Droplets - physiology</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Oxygen - metabolism</topic><topic>Oxygen Consumption</topic><topic>Palmitoylation</topic><topic>Potassium chloride</topic><topic>Proteasomes</topic><topic>Secretion</topic><topic>SNAP receptors</topic><topic>Syntaxin</topic><topic>Syntaxin 1</topic><topic>Syntaxin 1 - genetics</topic><topic>Syntaxin 1 - metabolism</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Siming</creatorcontrib><creatorcontrib>Promes, Joseph A</creatorcontrib><creatorcontrib>Harata, Mikako</creatorcontrib><creatorcontrib>Mishra, Akansha</creatorcontrib><creatorcontrib>Stephens, Samuel B</creatorcontrib><creatorcontrib>Taylor, Eric B</creatorcontrib><creatorcontrib>Burand, Jr, Anthony J</creatorcontrib><creatorcontrib>Sivitz, William I</creatorcontrib><creatorcontrib>Fink, Brian D</creatorcontrib><creatorcontrib>Ankrum, James A</creatorcontrib><creatorcontrib>Imai, Yumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Siming</au><au>Promes, Joseph A</au><au>Harata, Mikako</au><au>Mishra, Akansha</au><au>Stephens, Samuel B</au><au>Taylor, Eric B</au><au>Burand, Jr, Anthony J</au><au>Sivitz, William I</au><au>Fink, Brian D</au><au>Ankrum, James A</au><au>Imai, Yumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>69</volume><issue>6</issue><spage>1178</spage><epage>1192</epage><pages>1178-1192</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32312867</pmid><doi>10.2337/db19-0951</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5046-4223</orcidid><orcidid>https://orcid.org/0000-0002-6342-130X</orcidid><orcidid>https://orcid.org/0000-0002-7829-0189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2020-06, Vol.69 (6), p.1178-1192
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7243295
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Beta cells
Diabetes
Diabetes mellitus (non-insulin dependent)
Down-Regulation
Gene Expression Regulation, Enzymologic - physiology
Glucose
Humans
Insulin
Insulin - metabolism
Insulin secretion
Insulin-Secreting Cells - physiology
Islet Studies
Lipase
Lipase - genetics
Lipase - metabolism
Lipid Droplets - physiology
Lipids
Lipolysis
Mice
Mice, Inbred C57BL
Mice, Knockout
Oxygen - metabolism
Oxygen Consumption
Palmitoylation
Potassium chloride
Proteasomes
Secretion
SNAP receptors
Syntaxin
Syntaxin 1
Syntaxin 1 - genetics
Syntaxin 1 - metabolism
Triglycerides
title Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adipose%20Triglyceride%20Lipase%20Is%20a%20Key%20Lipase%20for%20the%20Mobilization%20of%20Lipid%20Droplets%20in%20Human%20%CE%B2-Cells%20and%20Critical%20for%20the%20Maintenance%20of%20Syntaxin%201a%20Levels%20in%20%CE%B2-Cells&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Liu,%20Siming&rft.date=2020-06-01&rft.volume=69&rft.issue=6&rft.spage=1178&rft.epage=1192&rft.pages=1178-1192&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db19-0951&rft_dat=%3Cproquest_pubme%3E2393037883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406641684&rft_id=info:pmid/32312867&rfr_iscdi=true