Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells
Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lip...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2020-06, Vol.69 (6), p.1178-1192 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1192 |
---|---|
container_issue | 6 |
container_start_page | 1178 |
container_title | Diabetes (New York, N.Y.) |
container_volume | 69 |
creator | Liu, Siming Promes, Joseph A Harata, Mikako Mishra, Akansha Stephens, Samuel B Taylor, Eric B Burand, Jr, Anthony J Sivitz, William I Fink, Brian D Ankrum, James A Imai, Yumi |
description | Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets. |
doi_str_mv | 10.2337/db19-0951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7243295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393037883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</originalsourceid><addsrcrecordid>eNpdkc1u1DAQxyMEokvhwAsgS1zgELA9WTu-IFXLRysWcaBI3CzHnrSusvbWTiqWF-LOg_BMOLRbPuSD5Zmff5rRv6oeM_qCA8iXrmOqpmrJ7lQLpkDVwOWXu9WCUsZrJpU8qB7kfEEpFeXcrw6AA-OtkIvq-5Hz25iRnCZ_NuwsJu-QrP3WlNpJJoa8x93-3cdExnMkH2LnB__NjD4GEvu57R15neJ2wDETH8jxtDGB_PxRr3AYiiU4skp-9NYMfyzGhxGDCRZnyaddGM3X8pcZssYrHH6L9oqH1b3eDBkf3dyH1ee3b05Xx_X647uT1dG6tg2FsWacCpCdU4r1gLxxdOkYutbarufQAiJ0bMlQOckFE9KwprPSQNcLhUYgHFavrr3bqdugsxjGZAa9TX5j0k5H4_W_neDP9Vm80pI3wNWyCJ7dCFK8nDCPeuOzLSuYgHHKmoMCCrJtoaBP_0Mv4pRCWU_zhgrRMNE2hXp-TdkUc07Y3w7DqJ7j13P8eo6_sE_-nv6W3OcNvwCm8q2m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406641684</pqid></control><display><type>article</type><title>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Siming ; Promes, Joseph A ; Harata, Mikako ; Mishra, Akansha ; Stephens, Samuel B ; Taylor, Eric B ; Burand, Jr, Anthony J ; Sivitz, William I ; Fink, Brian D ; Ankrum, James A ; Imai, Yumi</creator><creatorcontrib>Liu, Siming ; Promes, Joseph A ; Harata, Mikako ; Mishra, Akansha ; Stephens, Samuel B ; Taylor, Eric B ; Burand, Jr, Anthony J ; Sivitz, William I ; Fink, Brian D ; Ankrum, James A ; Imai, Yumi</creatorcontrib><description>Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db19-0951</identifier><identifier>PMID: 32312867</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Animals ; Beta cells ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Down-Regulation ; Gene Expression Regulation, Enzymologic - physiology ; Glucose ; Humans ; Insulin ; Insulin - metabolism ; Insulin secretion ; Insulin-Secreting Cells - physiology ; Islet Studies ; Lipase ; Lipase - genetics ; Lipase - metabolism ; Lipid Droplets - physiology ; Lipids ; Lipolysis ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Oxygen - metabolism ; Oxygen Consumption ; Palmitoylation ; Potassium chloride ; Proteasomes ; Secretion ; SNAP receptors ; Syntaxin ; Syntaxin 1 ; Syntaxin 1 - genetics ; Syntaxin 1 - metabolism ; Triglycerides</subject><ispartof>Diabetes (New York, N.Y.), 2020-06, Vol.69 (6), p.1178-1192</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jun 1, 2020</rights><rights>2020 by the American Diabetes Association 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</citedby><cites>FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</cites><orcidid>0000-0001-5046-4223 ; 0000-0002-6342-130X ; 0000-0002-7829-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32312867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Siming</creatorcontrib><creatorcontrib>Promes, Joseph A</creatorcontrib><creatorcontrib>Harata, Mikako</creatorcontrib><creatorcontrib>Mishra, Akansha</creatorcontrib><creatorcontrib>Stephens, Samuel B</creatorcontrib><creatorcontrib>Taylor, Eric B</creatorcontrib><creatorcontrib>Burand, Jr, Anthony J</creatorcontrib><creatorcontrib>Sivitz, William I</creatorcontrib><creatorcontrib>Fink, Brian D</creatorcontrib><creatorcontrib>Ankrum, James A</creatorcontrib><creatorcontrib>Imai, Yumi</creatorcontrib><title>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.</description><subject>Animals</subject><subject>Beta cells</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Down-Regulation</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Glucose</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Islet Studies</subject><subject>Lipase</subject><subject>Lipase - genetics</subject><subject>Lipase - metabolism</subject><subject>Lipid Droplets - physiology</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Oxygen - metabolism</subject><subject>Oxygen Consumption</subject><subject>Palmitoylation</subject><subject>Potassium chloride</subject><subject>Proteasomes</subject><subject>Secretion</subject><subject>SNAP receptors</subject><subject>Syntaxin</subject><subject>Syntaxin 1</subject><subject>Syntaxin 1 - genetics</subject><subject>Syntaxin 1 - metabolism</subject><subject>Triglycerides</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAQxyMEokvhwAsgS1zgELA9WTu-IFXLRysWcaBI3CzHnrSusvbWTiqWF-LOg_BMOLRbPuSD5Zmff5rRv6oeM_qCA8iXrmOqpmrJ7lQLpkDVwOWXu9WCUsZrJpU8qB7kfEEpFeXcrw6AA-OtkIvq-5Hz25iRnCZ_NuwsJu-QrP3WlNpJJoa8x93-3cdExnMkH2LnB__NjD4GEvu57R15neJ2wDETH8jxtDGB_PxRr3AYiiU4skp-9NYMfyzGhxGDCRZnyaddGM3X8pcZssYrHH6L9oqH1b3eDBkf3dyH1ee3b05Xx_X647uT1dG6tg2FsWacCpCdU4r1gLxxdOkYutbarufQAiJ0bMlQOckFE9KwprPSQNcLhUYgHFavrr3bqdugsxjGZAa9TX5j0k5H4_W_neDP9Vm80pI3wNWyCJ7dCFK8nDCPeuOzLSuYgHHKmoMCCrJtoaBP_0Mv4pRCWU_zhgrRMNE2hXp-TdkUc07Y3w7DqJ7j13P8eo6_sE_-nv6W3OcNvwCm8q2m</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Siming</creator><creator>Promes, Joseph A</creator><creator>Harata, Mikako</creator><creator>Mishra, Akansha</creator><creator>Stephens, Samuel B</creator><creator>Taylor, Eric B</creator><creator>Burand, Jr, Anthony J</creator><creator>Sivitz, William I</creator><creator>Fink, Brian D</creator><creator>Ankrum, James A</creator><creator>Imai, Yumi</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5046-4223</orcidid><orcidid>https://orcid.org/0000-0002-6342-130X</orcidid><orcidid>https://orcid.org/0000-0002-7829-0189</orcidid></search><sort><creationdate>20200601</creationdate><title>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</title><author>Liu, Siming ; Promes, Joseph A ; Harata, Mikako ; Mishra, Akansha ; Stephens, Samuel B ; Taylor, Eric B ; Burand, Jr, Anthony J ; Sivitz, William I ; Fink, Brian D ; Ankrum, James A ; Imai, Yumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-120637bd991f3e24d05d1ed8ccbf2383ee3b151e9d726167a14bc7a3bf69ea6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Beta cells</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Down-Regulation</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Glucose</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Islet Studies</topic><topic>Lipase</topic><topic>Lipase - genetics</topic><topic>Lipase - metabolism</topic><topic>Lipid Droplets - physiology</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Oxygen - metabolism</topic><topic>Oxygen Consumption</topic><topic>Palmitoylation</topic><topic>Potassium chloride</topic><topic>Proteasomes</topic><topic>Secretion</topic><topic>SNAP receptors</topic><topic>Syntaxin</topic><topic>Syntaxin 1</topic><topic>Syntaxin 1 - genetics</topic><topic>Syntaxin 1 - metabolism</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Siming</creatorcontrib><creatorcontrib>Promes, Joseph A</creatorcontrib><creatorcontrib>Harata, Mikako</creatorcontrib><creatorcontrib>Mishra, Akansha</creatorcontrib><creatorcontrib>Stephens, Samuel B</creatorcontrib><creatorcontrib>Taylor, Eric B</creatorcontrib><creatorcontrib>Burand, Jr, Anthony J</creatorcontrib><creatorcontrib>Sivitz, William I</creatorcontrib><creatorcontrib>Fink, Brian D</creatorcontrib><creatorcontrib>Ankrum, James A</creatorcontrib><creatorcontrib>Imai, Yumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Siming</au><au>Promes, Joseph A</au><au>Harata, Mikako</au><au>Mishra, Akansha</au><au>Stephens, Samuel B</au><au>Taylor, Eric B</au><au>Burand, Jr, Anthony J</au><au>Sivitz, William I</au><au>Fink, Brian D</au><au>Ankrum, James A</au><au>Imai, Yumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>69</volume><issue>6</issue><spage>1178</spage><epage>1192</epage><pages>1178-1192</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse β-cells, LDs are prominent in human β-cells. However, the regulation of LD mobilization (lipolysis) in human β-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human β-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human β-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and β-cell dysfunction in T2D islets.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32312867</pmid><doi>10.2337/db19-0951</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5046-4223</orcidid><orcidid>https://orcid.org/0000-0002-6342-130X</orcidid><orcidid>https://orcid.org/0000-0002-7829-0189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2020-06, Vol.69 (6), p.1178-1192 |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7243295 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Beta cells Diabetes Diabetes mellitus (non-insulin dependent) Down-Regulation Gene Expression Regulation, Enzymologic - physiology Glucose Humans Insulin Insulin - metabolism Insulin secretion Insulin-Secreting Cells - physiology Islet Studies Lipase Lipase - genetics Lipase - metabolism Lipid Droplets - physiology Lipids Lipolysis Mice Mice, Inbred C57BL Mice, Knockout Oxygen - metabolism Oxygen Consumption Palmitoylation Potassium chloride Proteasomes Secretion SNAP receptors Syntaxin Syntaxin 1 Syntaxin 1 - genetics Syntaxin 1 - metabolism Triglycerides |
title | Adipose Triglyceride Lipase Is a Key Lipase for the Mobilization of Lipid Droplets in Human β-Cells and Critical for the Maintenance of Syntaxin 1a Levels in β-Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adipose%20Triglyceride%20Lipase%20Is%20a%20Key%20Lipase%20for%20the%20Mobilization%20of%20Lipid%20Droplets%20in%20Human%20%CE%B2-Cells%20and%20Critical%20for%20the%20Maintenance%20of%20Syntaxin%201a%20Levels%20in%20%CE%B2-Cells&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Liu,%20Siming&rft.date=2020-06-01&rft.volume=69&rft.issue=6&rft.spage=1178&rft.epage=1192&rft.pages=1178-1192&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db19-0951&rft_dat=%3Cproquest_pubme%3E2393037883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406641684&rft_id=info:pmid/32312867&rfr_iscdi=true |