Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites
Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2020-06, Vol.14 (6), p.1533-1546 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1546 |
---|---|
container_issue | 6 |
container_start_page | 1533 |
container_title | The ISME Journal |
container_volume | 14 |
creator | Nitschke, Matthew R. Fidalgo, Cátia Simões, João Brandão, Cláudio Alves, Artur Serôdio, João Frommlet, Jörg C. |
description | Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes. |
doi_str_mv | 10.1038/s41396-020-0629-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405595812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</originalsourceid><addsrcrecordid>eNp1Uc1qFTEYDaLYWn0ANxJwPZpkkpnGhSDFVqHgQl2HJPPNvSkz-a5JpnL7ID6vGW691YWrHPjOXziEvOTsDWft-dsseau7hgnWsE7o5u4ROeW94k3f9uzxEXfihDzL-YYx1Xdd_5SctEKwlnN9Sn593c8u4BQK0BHTbEvA-I5ausOfkMZloiHS21AS0hkHmGhBusRi42YCWrZAE1aAI3XWF0jBTtTjPC8xlAB5Fa-k3RYL5n2sOIfchDgsHoaHwNVgDj6hqwa1Sn5Onox2yvDi_j0j3y8_frv41Fx_ufp88eG68bJnpeGCSTeIQWvvhO6cGqy3nRuVEtJy4aEVvAVvre6kHLjVcM6FY1r3likJrj0j7w--u8XNMHiIJdnJ7FKYbdobtMH8e4lhazZ4a3ohhVS8Gry-N0j4Y4FczA0uKdbORkimlFY1sbL4gVW_mHOC8ZjAmVmnNIcpTZ3SrFOau6p59Xe1o-LPdpUgDoRcT3ED6SH6_66_Aeckr54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405595812</pqid></control><display><type>article</type><title>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nitschke, Matthew R. ; Fidalgo, Cátia ; Simões, João ; Brandão, Cláudio ; Alves, Artur ; Serôdio, João ; Frommlet, Jörg C.</creator><creatorcontrib>Nitschke, Matthew R. ; Fidalgo, Cátia ; Simões, João ; Brandão, Cláudio ; Alves, Artur ; Serôdio, João ; Frommlet, Jörg C.</creatorcontrib><description>Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-0629-z</identifier><identifier>PMID: 32203119</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 14 ; 14/63 ; 45/77 ; 631/158/855 ; 631/208/514/2254 ; 631/326/2565/855 ; 631/326/46 ; 704/47 ; Algae ; Bacteria ; Bacteria - metabolism ; Bacteroidetes ; Biofilms ; Biomedical and Life Sciences ; Calcification ; Chemical precipitation ; Digesters ; Dinoflagellata ; Dinoflagellates ; Dinoflagellida ; Ecology ; Evolutionary Biology ; Life Sciences ; Metagenome ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mineralization ; Nuclease ; Phenotypes ; Photosynthesis ; Photosynthesis - physiology ; Polysaccharides ; Relative abundance ; Saccharides ; Stimulators ; Symbiosis</subject><ispartof>The ISME Journal, 2020-06, Vol.14 (6), p.1533-1546</ispartof><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2020</rights><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</citedby><cites>FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</cites><orcidid>0000-0003-0117-2958 ; 0000-0002-7064-4966 ; 0000-0002-7573-5920 ; 0000-0001-7399-3021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242451/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242451/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitschke, Matthew R.</creatorcontrib><creatorcontrib>Fidalgo, Cátia</creatorcontrib><creatorcontrib>Simões, João</creatorcontrib><creatorcontrib>Brandão, Cláudio</creatorcontrib><creatorcontrib>Alves, Artur</creatorcontrib><creatorcontrib>Serôdio, João</creatorcontrib><creatorcontrib>Frommlet, Jörg C.</creatorcontrib><title>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.</description><subject>13/106</subject><subject>14</subject><subject>14/63</subject><subject>45/77</subject><subject>631/158/855</subject><subject>631/208/514/2254</subject><subject>631/326/2565/855</subject><subject>631/326/46</subject><subject>704/47</subject><subject>Algae</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacteroidetes</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Calcification</subject><subject>Chemical precipitation</subject><subject>Digesters</subject><subject>Dinoflagellata</subject><subject>Dinoflagellates</subject><subject>Dinoflagellida</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Nuclease</subject><subject>Phenotypes</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Polysaccharides</subject><subject>Relative abundance</subject><subject>Saccharides</subject><subject>Stimulators</subject><subject>Symbiosis</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Uc1qFTEYDaLYWn0ANxJwPZpkkpnGhSDFVqHgQl2HJPPNvSkz-a5JpnL7ID6vGW691YWrHPjOXziEvOTsDWft-dsseau7hgnWsE7o5u4ROeW94k3f9uzxEXfihDzL-YYx1Xdd_5SctEKwlnN9Sn593c8u4BQK0BHTbEvA-I5ausOfkMZloiHS21AS0hkHmGhBusRi42YCWrZAE1aAI3XWF0jBTtTjPC8xlAB5Fa-k3RYL5n2sOIfchDgsHoaHwNVgDj6hqwa1Sn5Onox2yvDi_j0j3y8_frv41Fx_ufp88eG68bJnpeGCSTeIQWvvhO6cGqy3nRuVEtJy4aEVvAVvre6kHLjVcM6FY1r3likJrj0j7w--u8XNMHiIJdnJ7FKYbdobtMH8e4lhazZ4a3ohhVS8Gry-N0j4Y4FczA0uKdbORkimlFY1sbL4gVW_mHOC8ZjAmVmnNIcpTZ3SrFOau6p59Xe1o-LPdpUgDoRcT3ED6SH6_66_Aeckr54</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nitschke, Matthew R.</creator><creator>Fidalgo, Cátia</creator><creator>Simões, João</creator><creator>Brandão, Cláudio</creator><creator>Alves, Artur</creator><creator>Serôdio, João</creator><creator>Frommlet, Jörg C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0117-2958</orcidid><orcidid>https://orcid.org/0000-0002-7064-4966</orcidid><orcidid>https://orcid.org/0000-0002-7573-5920</orcidid><orcidid>https://orcid.org/0000-0001-7399-3021</orcidid></search><sort><creationdate>20200601</creationdate><title>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</title><author>Nitschke, Matthew R. ; Fidalgo, Cátia ; Simões, João ; Brandão, Cláudio ; Alves, Artur ; Serôdio, João ; Frommlet, Jörg C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/106</topic><topic>14</topic><topic>14/63</topic><topic>45/77</topic><topic>631/158/855</topic><topic>631/208/514/2254</topic><topic>631/326/2565/855</topic><topic>631/326/46</topic><topic>704/47</topic><topic>Algae</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacteroidetes</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Calcification</topic><topic>Chemical precipitation</topic><topic>Digesters</topic><topic>Dinoflagellata</topic><topic>Dinoflagellates</topic><topic>Dinoflagellida</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Nuclease</topic><topic>Phenotypes</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Polysaccharides</topic><topic>Relative abundance</topic><topic>Saccharides</topic><topic>Stimulators</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschke, Matthew R.</creatorcontrib><creatorcontrib>Fidalgo, Cátia</creatorcontrib><creatorcontrib>Simões, João</creatorcontrib><creatorcontrib>Brandão, Cláudio</creatorcontrib><creatorcontrib>Alves, Artur</creatorcontrib><creatorcontrib>Serôdio, João</creatorcontrib><creatorcontrib>Frommlet, Jörg C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitschke, Matthew R.</au><au>Fidalgo, Cátia</au><au>Simões, João</au><au>Brandão, Cláudio</au><au>Alves, Artur</au><au>Serôdio, João</au><au>Frommlet, Jörg C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>1533</spage><epage>1546</epage><pages>1533-1546</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32203119</pmid><doi>10.1038/s41396-020-0629-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0117-2958</orcidid><orcidid>https://orcid.org/0000-0002-7064-4966</orcidid><orcidid>https://orcid.org/0000-0002-7573-5920</orcidid><orcidid>https://orcid.org/0000-0001-7399-3021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2020-06, Vol.14 (6), p.1533-1546 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242451 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 13/106 14 14/63 45/77 631/158/855 631/208/514/2254 631/326/2565/855 631/326/46 704/47 Algae Bacteria Bacteria - metabolism Bacteroidetes Biofilms Biomedical and Life Sciences Calcification Chemical precipitation Digesters Dinoflagellata Dinoflagellates Dinoflagellida Ecology Evolutionary Biology Life Sciences Metagenome Microbial Ecology Microbial Genetics and Genomics Microbiology Microorganisms Mineralization Nuclease Phenotypes Photosynthesis Photosynthesis - physiology Polysaccharides Relative abundance Saccharides Stimulators Symbiosis |
title | Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiolite%20formation:%20a%20powerful%20in%20vitro%20model%20to%20untangle%20the%20role%20of%20bacterial%20communities%20in%20the%20photosynthesis-induced%20formation%20of%20microbialites&rft.jtitle=The%20ISME%20Journal&rft.au=Nitschke,%20Matthew%20R.&rft.date=2020-06-01&rft.volume=14&rft.issue=6&rft.spage=1533&rft.epage=1546&rft.pages=1533-1546&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-0629-z&rft_dat=%3Cproquest_pubme%3E2405595812%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405595812&rft_id=info:pmid/32203119&rfr_iscdi=true |