Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites

Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2020-06, Vol.14 (6), p.1533-1546
Hauptverfasser: Nitschke, Matthew R., Fidalgo, Cátia, Simões, João, Brandão, Cláudio, Alves, Artur, Serôdio, João, Frommlet, Jörg C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1546
container_issue 6
container_start_page 1533
container_title The ISME Journal
container_volume 14
creator Nitschke, Matthew R.
Fidalgo, Cátia
Simões, João
Brandão, Cláudio
Alves, Artur
Serôdio, João
Frommlet, Jörg C.
description Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.
doi_str_mv 10.1038/s41396-020-0629-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405595812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</originalsourceid><addsrcrecordid>eNp1Uc1qFTEYDaLYWn0ANxJwPZpkkpnGhSDFVqHgQl2HJPPNvSkz-a5JpnL7ID6vGW691YWrHPjOXziEvOTsDWft-dsseau7hgnWsE7o5u4ROeW94k3f9uzxEXfihDzL-YYx1Xdd_5SctEKwlnN9Sn593c8u4BQK0BHTbEvA-I5ausOfkMZloiHS21AS0hkHmGhBusRi42YCWrZAE1aAI3XWF0jBTtTjPC8xlAB5Fa-k3RYL5n2sOIfchDgsHoaHwNVgDj6hqwa1Sn5Onox2yvDi_j0j3y8_frv41Fx_ufp88eG68bJnpeGCSTeIQWvvhO6cGqy3nRuVEtJy4aEVvAVvre6kHLjVcM6FY1r3likJrj0j7w--u8XNMHiIJdnJ7FKYbdobtMH8e4lhazZ4a3ohhVS8Gry-N0j4Y4FczA0uKdbORkimlFY1sbL4gVW_mHOC8ZjAmVmnNIcpTZ3SrFOau6p59Xe1o-LPdpUgDoRcT3ED6SH6_66_Aeckr54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405595812</pqid></control><display><type>article</type><title>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nitschke, Matthew R. ; Fidalgo, Cátia ; Simões, João ; Brandão, Cláudio ; Alves, Artur ; Serôdio, João ; Frommlet, Jörg C.</creator><creatorcontrib>Nitschke, Matthew R. ; Fidalgo, Cátia ; Simões, João ; Brandão, Cláudio ; Alves, Artur ; Serôdio, João ; Frommlet, Jörg C.</creatorcontrib><description>Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-0629-z</identifier><identifier>PMID: 32203119</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 14 ; 14/63 ; 45/77 ; 631/158/855 ; 631/208/514/2254 ; 631/326/2565/855 ; 631/326/46 ; 704/47 ; Algae ; Bacteria ; Bacteria - metabolism ; Bacteroidetes ; Biofilms ; Biomedical and Life Sciences ; Calcification ; Chemical precipitation ; Digesters ; Dinoflagellata ; Dinoflagellates ; Dinoflagellida ; Ecology ; Evolutionary Biology ; Life Sciences ; Metagenome ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mineralization ; Nuclease ; Phenotypes ; Photosynthesis ; Photosynthesis - physiology ; Polysaccharides ; Relative abundance ; Saccharides ; Stimulators ; Symbiosis</subject><ispartof>The ISME Journal, 2020-06, Vol.14 (6), p.1533-1546</ispartof><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2020</rights><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</citedby><cites>FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</cites><orcidid>0000-0003-0117-2958 ; 0000-0002-7064-4966 ; 0000-0002-7573-5920 ; 0000-0001-7399-3021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242451/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242451/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitschke, Matthew R.</creatorcontrib><creatorcontrib>Fidalgo, Cátia</creatorcontrib><creatorcontrib>Simões, João</creatorcontrib><creatorcontrib>Brandão, Cláudio</creatorcontrib><creatorcontrib>Alves, Artur</creatorcontrib><creatorcontrib>Serôdio, João</creatorcontrib><creatorcontrib>Frommlet, Jörg C.</creatorcontrib><title>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.</description><subject>13/106</subject><subject>14</subject><subject>14/63</subject><subject>45/77</subject><subject>631/158/855</subject><subject>631/208/514/2254</subject><subject>631/326/2565/855</subject><subject>631/326/46</subject><subject>704/47</subject><subject>Algae</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacteroidetes</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Calcification</subject><subject>Chemical precipitation</subject><subject>Digesters</subject><subject>Dinoflagellata</subject><subject>Dinoflagellates</subject><subject>Dinoflagellida</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Nuclease</subject><subject>Phenotypes</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Polysaccharides</subject><subject>Relative abundance</subject><subject>Saccharides</subject><subject>Stimulators</subject><subject>Symbiosis</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Uc1qFTEYDaLYWn0ANxJwPZpkkpnGhSDFVqHgQl2HJPPNvSkz-a5JpnL7ID6vGW691YWrHPjOXziEvOTsDWft-dsseau7hgnWsE7o5u4ROeW94k3f9uzxEXfihDzL-YYx1Xdd_5SctEKwlnN9Sn593c8u4BQK0BHTbEvA-I5ausOfkMZloiHS21AS0hkHmGhBusRi42YCWrZAE1aAI3XWF0jBTtTjPC8xlAB5Fa-k3RYL5n2sOIfchDgsHoaHwNVgDj6hqwa1Sn5Onox2yvDi_j0j3y8_frv41Fx_ufp88eG68bJnpeGCSTeIQWvvhO6cGqy3nRuVEtJy4aEVvAVvre6kHLjVcM6FY1r3likJrj0j7w--u8XNMHiIJdnJ7FKYbdobtMH8e4lhazZ4a3ohhVS8Gry-N0j4Y4FczA0uKdbORkimlFY1sbL4gVW_mHOC8ZjAmVmnNIcpTZ3SrFOau6p59Xe1o-LPdpUgDoRcT3ED6SH6_66_Aeckr54</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nitschke, Matthew R.</creator><creator>Fidalgo, Cátia</creator><creator>Simões, João</creator><creator>Brandão, Cláudio</creator><creator>Alves, Artur</creator><creator>Serôdio, João</creator><creator>Frommlet, Jörg C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0117-2958</orcidid><orcidid>https://orcid.org/0000-0002-7064-4966</orcidid><orcidid>https://orcid.org/0000-0002-7573-5920</orcidid><orcidid>https://orcid.org/0000-0001-7399-3021</orcidid></search><sort><creationdate>20200601</creationdate><title>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</title><author>Nitschke, Matthew R. ; Fidalgo, Cátia ; Simões, João ; Brandão, Cláudio ; Alves, Artur ; Serôdio, João ; Frommlet, Jörg C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1204bd2d99cb296b5daca6bf5524a12ce3213ecaa9644d1a9e812b0997a054eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/106</topic><topic>14</topic><topic>14/63</topic><topic>45/77</topic><topic>631/158/855</topic><topic>631/208/514/2254</topic><topic>631/326/2565/855</topic><topic>631/326/46</topic><topic>704/47</topic><topic>Algae</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacteroidetes</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Calcification</topic><topic>Chemical precipitation</topic><topic>Digesters</topic><topic>Dinoflagellata</topic><topic>Dinoflagellates</topic><topic>Dinoflagellida</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Nuclease</topic><topic>Phenotypes</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Polysaccharides</topic><topic>Relative abundance</topic><topic>Saccharides</topic><topic>Stimulators</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschke, Matthew R.</creatorcontrib><creatorcontrib>Fidalgo, Cátia</creatorcontrib><creatorcontrib>Simões, João</creatorcontrib><creatorcontrib>Brandão, Cláudio</creatorcontrib><creatorcontrib>Alves, Artur</creatorcontrib><creatorcontrib>Serôdio, João</creatorcontrib><creatorcontrib>Frommlet, Jörg C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitschke, Matthew R.</au><au>Fidalgo, Cátia</au><au>Simões, João</au><au>Brandão, Cláudio</au><au>Alves, Artur</au><au>Serôdio, João</au><au>Frommlet, Jörg C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>1533</spage><epage>1546</epage><pages>1533-1546</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial–algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32203119</pmid><doi>10.1038/s41396-020-0629-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0117-2958</orcidid><orcidid>https://orcid.org/0000-0002-7064-4966</orcidid><orcidid>https://orcid.org/0000-0002-7573-5920</orcidid><orcidid>https://orcid.org/0000-0001-7399-3021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2020-06, Vol.14 (6), p.1533-1546
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242451
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 13/106
14
14/63
45/77
631/158/855
631/208/514/2254
631/326/2565/855
631/326/46
704/47
Algae
Bacteria
Bacteria - metabolism
Bacteroidetes
Biofilms
Biomedical and Life Sciences
Calcification
Chemical precipitation
Digesters
Dinoflagellata
Dinoflagellates
Dinoflagellida
Ecology
Evolutionary Biology
Life Sciences
Metagenome
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mineralization
Nuclease
Phenotypes
Photosynthesis
Photosynthesis - physiology
Polysaccharides
Relative abundance
Saccharides
Stimulators
Symbiosis
title Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiolite%20formation:%20a%20powerful%20in%20vitro%20model%20to%20untangle%20the%20role%20of%20bacterial%20communities%20in%20the%20photosynthesis-induced%20formation%20of%20microbialites&rft.jtitle=The%20ISME%20Journal&rft.au=Nitschke,%20Matthew%20R.&rft.date=2020-06-01&rft.volume=14&rft.issue=6&rft.spage=1533&rft.epage=1546&rft.pages=1533-1546&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-0629-z&rft_dat=%3Cproquest_pubme%3E2405595812%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405595812&rft_id=info:pmid/32203119&rfr_iscdi=true