Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining

Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2020-06, Vol.14 (6), p.1600-1613
Hauptverfasser: Liang, Jie-Liang, Liu, Jun, Jia, Pu, Yang, Tao-tao, Zeng, Qing-wei, Zhang, Sheng-chang, Liao, Bin, Shu, Wen-sheng, Li, Jin-tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1613
container_issue 6
container_start_page 1600
container_title The ISME Journal
container_volume 14
creator Liang, Jie-Liang
Liu, Jun
Jia, Pu
Yang, Tao-tao
Zeng, Qing-wei
Zhang, Sheng-chang
Liao, Bin
Shu, Wen-sheng
Li, Jin-tian
description Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd , which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.
doi_str_mv 10.1038/s41396-020-0632-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382643556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSNERUvhB7BBltiwCfjtZIOEKl5SRTft2rpx7Iwrjz3YSdGw45_jaNrhIbHyle53ju_RaZoXBL8hmHVvCyesly2muMWS0ZY_as6IEqRVTOHHx1nS0-ZpKbcYCyWletKcMkoxI5SfNT-_pjsb0G6Tym4Ds21LCsvgg__h44QGMLPNHpCNG4jGopL8A5zyUpDZm7CCLoWQvq-TNSmkyRsIKNsypwyzTxElhwLEEY12yjDaEQ17tPWxKp41Jw5Csc_v3_Pm5uOH64vP7eXVpy8X7y9bwxWe275jA--Iw5wL4M4YQYfROcFYN4BwZBgMKN6BM7ZXihiAXmI8GsoNN0wCO2_eHXx3y7C1o7FxzhD0Lvst5L1O4PXfm-g3ekp3WlFOOZfV4PW9QU7flppNb30xNtRcNi1FU9ZRyZkQK_rqH_Q2LTnWeJpyLEQvOq4qRQ6UyamUbN3xGIL1WrA-FKxrwXotWPOqeflniqPiodEK0ANQ6ipONv_--v-uvwA6q7Vs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405595847</pqid></control><display><type>article</type><title>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liang, Jie-Liang ; Liu, Jun ; Jia, Pu ; Yang, Tao-tao ; Zeng, Qing-wei ; Zhang, Sheng-chang ; Liao, Bin ; Shu, Wen-sheng ; Li, Jin-tian</creator><creatorcontrib>Liang, Jie-Liang ; Liu, Jun ; Jia, Pu ; Yang, Tao-tao ; Zeng, Qing-wei ; Zhang, Sheng-chang ; Liao, Bin ; Shu, Wen-sheng ; Li, Jin-tian</creatorcontrib><description>Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd , which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-0632-4</identifier><identifier>PMID: 32203124</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/43 ; 45/47 ; 631/158/855 ; 631/326/171/1818 ; Abundance ; Bacteria - genetics ; Bioavailability ; Biomedical and Life Sciences ; China ; Cycles ; Ecology ; Ecosystem management ; Environmental restoration ; Evolutionary Biology ; Gene transfer ; Genomes ; Horizontal transfer ; Life Sciences ; Metagenomics ; Microbial activity ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiota ; Microorganisms ; Mining ; Phages ; Phosphates - metabolism ; Phosphorus ; Phosphorus - metabolism ; Plant species ; Plants - metabolism ; Relative abundance ; Restoration ; Soil ; Soil analysis ; Soil bacteria ; Soil Microbiology ; Soil microorganisms ; Soils ; Solubilization</subject><ispartof>The ISME Journal, 2020-06, Vol.14 (6), p.1600-1613</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</citedby><cites>FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</cites><orcidid>0000-0001-8148-3515 ; 0000-0002-3451-2798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Jie-Liang</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Jia, Pu</creatorcontrib><creatorcontrib>Yang, Tao-tao</creatorcontrib><creatorcontrib>Zeng, Qing-wei</creatorcontrib><creatorcontrib>Zhang, Sheng-chang</creatorcontrib><creatorcontrib>Liao, Bin</creatorcontrib><creatorcontrib>Shu, Wen-sheng</creatorcontrib><creatorcontrib>Li, Jin-tian</creatorcontrib><title>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd , which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.</description><subject>45/23</subject><subject>45/43</subject><subject>45/47</subject><subject>631/158/855</subject><subject>631/326/171/1818</subject><subject>Abundance</subject><subject>Bacteria - genetics</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>China</subject><subject>Cycles</subject><subject>Ecology</subject><subject>Ecosystem management</subject><subject>Environmental restoration</subject><subject>Evolutionary Biology</subject><subject>Gene transfer</subject><subject>Genomes</subject><subject>Horizontal transfer</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Mining</subject><subject>Phages</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Plant species</subject><subject>Plants - metabolism</subject><subject>Relative abundance</subject><subject>Restoration</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil bacteria</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Solubilization</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv1DAUhSNERUvhB7BBltiwCfjtZIOEKl5SRTft2rpx7Iwrjz3YSdGw45_jaNrhIbHyle53ju_RaZoXBL8hmHVvCyesly2muMWS0ZY_as6IEqRVTOHHx1nS0-ZpKbcYCyWletKcMkoxI5SfNT-_pjsb0G6Tym4Ds21LCsvgg__h44QGMLPNHpCNG4jGopL8A5zyUpDZm7CCLoWQvq-TNSmkyRsIKNsypwyzTxElhwLEEY12yjDaEQ17tPWxKp41Jw5Csc_v3_Pm5uOH64vP7eXVpy8X7y9bwxWe275jA--Iw5wL4M4YQYfROcFYN4BwZBgMKN6BM7ZXihiAXmI8GsoNN0wCO2_eHXx3y7C1o7FxzhD0Lvst5L1O4PXfm-g3ekp3WlFOOZfV4PW9QU7flppNb30xNtRcNi1FU9ZRyZkQK_rqH_Q2LTnWeJpyLEQvOq4qRQ6UyamUbN3xGIL1WrA-FKxrwXotWPOqeflniqPiodEK0ANQ6ipONv_--v-uvwA6q7Vs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liang, Jie-Liang</creator><creator>Liu, Jun</creator><creator>Jia, Pu</creator><creator>Yang, Tao-tao</creator><creator>Zeng, Qing-wei</creator><creator>Zhang, Sheng-chang</creator><creator>Liao, Bin</creator><creator>Shu, Wen-sheng</creator><creator>Li, Jin-tian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8148-3515</orcidid><orcidid>https://orcid.org/0000-0002-3451-2798</orcidid></search><sort><creationdate>20200601</creationdate><title>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</title><author>Liang, Jie-Liang ; Liu, Jun ; Jia, Pu ; Yang, Tao-tao ; Zeng, Qing-wei ; Zhang, Sheng-chang ; Liao, Bin ; Shu, Wen-sheng ; Li, Jin-tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/23</topic><topic>45/43</topic><topic>45/47</topic><topic>631/158/855</topic><topic>631/326/171/1818</topic><topic>Abundance</topic><topic>Bacteria - genetics</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>China</topic><topic>Cycles</topic><topic>Ecology</topic><topic>Ecosystem management</topic><topic>Environmental restoration</topic><topic>Evolutionary Biology</topic><topic>Gene transfer</topic><topic>Genomes</topic><topic>Horizontal transfer</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Mining</topic><topic>Phages</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Plant species</topic><topic>Plants - metabolism</topic><topic>Relative abundance</topic><topic>Restoration</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil bacteria</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Solubilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jie-Liang</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Jia, Pu</creatorcontrib><creatorcontrib>Yang, Tao-tao</creatorcontrib><creatorcontrib>Zeng, Qing-wei</creatorcontrib><creatorcontrib>Zhang, Sheng-chang</creatorcontrib><creatorcontrib>Liao, Bin</creatorcontrib><creatorcontrib>Shu, Wen-sheng</creatorcontrib><creatorcontrib>Li, Jin-tian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jie-Liang</au><au>Liu, Jun</au><au>Jia, Pu</au><au>Yang, Tao-tao</au><au>Zeng, Qing-wei</au><au>Zhang, Sheng-chang</au><au>Liao, Bin</au><au>Shu, Wen-sheng</au><au>Li, Jin-tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>1600</spage><epage>1613</epage><pages>1600-1613</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd , which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32203124</pmid><doi>10.1038/s41396-020-0632-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8148-3515</orcidid><orcidid>https://orcid.org/0000-0002-3451-2798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2020-06, Vol.14 (6), p.1600-1613
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242446
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 45/23
45/43
45/47
631/158/855
631/326/171/1818
Abundance
Bacteria - genetics
Bioavailability
Biomedical and Life Sciences
China
Cycles
Ecology
Ecosystem management
Environmental restoration
Evolutionary Biology
Gene transfer
Genomes
Horizontal transfer
Life Sciences
Metagenomics
Microbial activity
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiota
Microorganisms
Mining
Phages
Phosphates - metabolism
Phosphorus
Phosphorus - metabolism
Plant species
Plants - metabolism
Relative abundance
Restoration
Soil
Soil analysis
Soil bacteria
Soil Microbiology
Soil microorganisms
Soils
Solubilization
title Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20phosphate-solubilizing%20bacteria%20enhance%20soil%20phosphorus%20cycling%20following%20ecological%20restoration%20of%20land%20degraded%20by%20mining&rft.jtitle=The%20ISME%20Journal&rft.au=Liang,%20Jie-Liang&rft.date=2020-06-01&rft.volume=14&rft.issue=6&rft.spage=1600&rft.epage=1613&rft.pages=1600-1613&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-0632-4&rft_dat=%3Cproquest_pubme%3E2382643556%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405595847&rft_id=info:pmid/32203124&rfr_iscdi=true