Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining
Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2020-06, Vol.14 (6), p.1600-1613 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1613 |
---|---|
container_issue | 6 |
container_start_page | 1600 |
container_title | The ISME Journal |
container_volume | 14 |
creator | Liang, Jie-Liang Liu, Jun Jia, Pu Yang, Tao-tao Zeng, Qing-wei Zhang, Sheng-chang Liao, Bin Shu, Wen-sheng Li, Jin-tian |
description | Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The
gcd
gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring
gcd
, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing
gcd
in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling. |
doi_str_mv | 10.1038/s41396-020-0632-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382643556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSNERUvhB7BBltiwCfjtZIOEKl5SRTft2rpx7Iwrjz3YSdGw45_jaNrhIbHyle53ju_RaZoXBL8hmHVvCyesly2muMWS0ZY_as6IEqRVTOHHx1nS0-ZpKbcYCyWletKcMkoxI5SfNT-_pjsb0G6Tym4Ds21LCsvgg__h44QGMLPNHpCNG4jGopL8A5zyUpDZm7CCLoWQvq-TNSmkyRsIKNsypwyzTxElhwLEEY12yjDaEQ17tPWxKp41Jw5Csc_v3_Pm5uOH64vP7eXVpy8X7y9bwxWe275jA--Iw5wL4M4YQYfROcFYN4BwZBgMKN6BM7ZXihiAXmI8GsoNN0wCO2_eHXx3y7C1o7FxzhD0Lvst5L1O4PXfm-g3ekp3WlFOOZfV4PW9QU7flppNb30xNtRcNi1FU9ZRyZkQK_rqH_Q2LTnWeJpyLEQvOq4qRQ6UyamUbN3xGIL1WrA-FKxrwXotWPOqeflniqPiodEK0ANQ6ipONv_--v-uvwA6q7Vs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405595847</pqid></control><display><type>article</type><title>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liang, Jie-Liang ; Liu, Jun ; Jia, Pu ; Yang, Tao-tao ; Zeng, Qing-wei ; Zhang, Sheng-chang ; Liao, Bin ; Shu, Wen-sheng ; Li, Jin-tian</creator><creatorcontrib>Liang, Jie-Liang ; Liu, Jun ; Jia, Pu ; Yang, Tao-tao ; Zeng, Qing-wei ; Zhang, Sheng-chang ; Liao, Bin ; Shu, Wen-sheng ; Li, Jin-tian</creatorcontrib><description>Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The
gcd
gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring
gcd
, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing
gcd
in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-0632-4</identifier><identifier>PMID: 32203124</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/43 ; 45/47 ; 631/158/855 ; 631/326/171/1818 ; Abundance ; Bacteria - genetics ; Bioavailability ; Biomedical and Life Sciences ; China ; Cycles ; Ecology ; Ecosystem management ; Environmental restoration ; Evolutionary Biology ; Gene transfer ; Genomes ; Horizontal transfer ; Life Sciences ; Metagenomics ; Microbial activity ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiota ; Microorganisms ; Mining ; Phages ; Phosphates - metabolism ; Phosphorus ; Phosphorus - metabolism ; Plant species ; Plants - metabolism ; Relative abundance ; Restoration ; Soil ; Soil analysis ; Soil bacteria ; Soil Microbiology ; Soil microorganisms ; Soils ; Solubilization</subject><ispartof>The ISME Journal, 2020-06, Vol.14 (6), p.1600-1613</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</citedby><cites>FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</cites><orcidid>0000-0001-8148-3515 ; 0000-0002-3451-2798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Jie-Liang</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Jia, Pu</creatorcontrib><creatorcontrib>Yang, Tao-tao</creatorcontrib><creatorcontrib>Zeng, Qing-wei</creatorcontrib><creatorcontrib>Zhang, Sheng-chang</creatorcontrib><creatorcontrib>Liao, Bin</creatorcontrib><creatorcontrib>Shu, Wen-sheng</creatorcontrib><creatorcontrib>Li, Jin-tian</creatorcontrib><title>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The
gcd
gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring
gcd
, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing
gcd
in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.</description><subject>45/23</subject><subject>45/43</subject><subject>45/47</subject><subject>631/158/855</subject><subject>631/326/171/1818</subject><subject>Abundance</subject><subject>Bacteria - genetics</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>China</subject><subject>Cycles</subject><subject>Ecology</subject><subject>Ecosystem management</subject><subject>Environmental restoration</subject><subject>Evolutionary Biology</subject><subject>Gene transfer</subject><subject>Genomes</subject><subject>Horizontal transfer</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Mining</subject><subject>Phages</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Plant species</subject><subject>Plants - metabolism</subject><subject>Relative abundance</subject><subject>Restoration</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil bacteria</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Solubilization</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv1DAUhSNERUvhB7BBltiwCfjtZIOEKl5SRTft2rpx7Iwrjz3YSdGw45_jaNrhIbHyle53ju_RaZoXBL8hmHVvCyesly2muMWS0ZY_as6IEqRVTOHHx1nS0-ZpKbcYCyWletKcMkoxI5SfNT-_pjsb0G6Tym4Ds21LCsvgg__h44QGMLPNHpCNG4jGopL8A5zyUpDZm7CCLoWQvq-TNSmkyRsIKNsypwyzTxElhwLEEY12yjDaEQ17tPWxKp41Jw5Csc_v3_Pm5uOH64vP7eXVpy8X7y9bwxWe275jA--Iw5wL4M4YQYfROcFYN4BwZBgMKN6BM7ZXihiAXmI8GsoNN0wCO2_eHXx3y7C1o7FxzhD0Lvst5L1O4PXfm-g3ekp3WlFOOZfV4PW9QU7flppNb30xNtRcNi1FU9ZRyZkQK_rqH_Q2LTnWeJpyLEQvOq4qRQ6UyamUbN3xGIL1WrA-FKxrwXotWPOqeflniqPiodEK0ANQ6ipONv_--v-uvwA6q7Vs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liang, Jie-Liang</creator><creator>Liu, Jun</creator><creator>Jia, Pu</creator><creator>Yang, Tao-tao</creator><creator>Zeng, Qing-wei</creator><creator>Zhang, Sheng-chang</creator><creator>Liao, Bin</creator><creator>Shu, Wen-sheng</creator><creator>Li, Jin-tian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8148-3515</orcidid><orcidid>https://orcid.org/0000-0002-3451-2798</orcidid></search><sort><creationdate>20200601</creationdate><title>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</title><author>Liang, Jie-Liang ; Liu, Jun ; Jia, Pu ; Yang, Tao-tao ; Zeng, Qing-wei ; Zhang, Sheng-chang ; Liao, Bin ; Shu, Wen-sheng ; Li, Jin-tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-983b481f0445a4fcc52bdff5338ba5f1bbca748afce9771caa9600dc24c4c36a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/23</topic><topic>45/43</topic><topic>45/47</topic><topic>631/158/855</topic><topic>631/326/171/1818</topic><topic>Abundance</topic><topic>Bacteria - genetics</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>China</topic><topic>Cycles</topic><topic>Ecology</topic><topic>Ecosystem management</topic><topic>Environmental restoration</topic><topic>Evolutionary Biology</topic><topic>Gene transfer</topic><topic>Genomes</topic><topic>Horizontal transfer</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Mining</topic><topic>Phages</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Plant species</topic><topic>Plants - metabolism</topic><topic>Relative abundance</topic><topic>Restoration</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil bacteria</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Solubilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jie-Liang</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Jia, Pu</creatorcontrib><creatorcontrib>Yang, Tao-tao</creatorcontrib><creatorcontrib>Zeng, Qing-wei</creatorcontrib><creatorcontrib>Zhang, Sheng-chang</creatorcontrib><creatorcontrib>Liao, Bin</creatorcontrib><creatorcontrib>Shu, Wen-sheng</creatorcontrib><creatorcontrib>Li, Jin-tian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jie-Liang</au><au>Liu, Jun</au><au>Jia, Pu</au><au>Yang, Tao-tao</au><au>Zeng, Qing-wei</au><au>Zhang, Sheng-chang</au><au>Liao, Bin</au><au>Shu, Wen-sheng</au><au>Li, Jin-tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>1600</spage><epage>1613</epage><pages>1600-1613</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The
gcd
gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring
gcd
, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing
gcd
in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32203124</pmid><doi>10.1038/s41396-020-0632-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8148-3515</orcidid><orcidid>https://orcid.org/0000-0002-3451-2798</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2020-06, Vol.14 (6), p.1600-1613 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242446 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 45/23 45/43 45/47 631/158/855 631/326/171/1818 Abundance Bacteria - genetics Bioavailability Biomedical and Life Sciences China Cycles Ecology Ecosystem management Environmental restoration Evolutionary Biology Gene transfer Genomes Horizontal transfer Life Sciences Metagenomics Microbial activity Microbial Ecology Microbial Genetics and Genomics Microbiology Microbiota Microorganisms Mining Phages Phosphates - metabolism Phosphorus Phosphorus - metabolism Plant species Plants - metabolism Relative abundance Restoration Soil Soil analysis Soil bacteria Soil Microbiology Soil microorganisms Soils Solubilization |
title | Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20phosphate-solubilizing%20bacteria%20enhance%20soil%20phosphorus%20cycling%20following%20ecological%20restoration%20of%20land%20degraded%20by%20mining&rft.jtitle=The%20ISME%20Journal&rft.au=Liang,%20Jie-Liang&rft.date=2020-06-01&rft.volume=14&rft.issue=6&rft.spage=1600&rft.epage=1613&rft.pages=1600-1613&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-0632-4&rft_dat=%3Cproquest_pubme%3E2382643556%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405595847&rft_id=info:pmid/32203124&rfr_iscdi=true |