Characterisation of the static offset in the travelling wave in the cochlear basal turn

In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2020-05, Vol.472 (5), p.625-635
Hauptverfasser: Ota, Takeru, Nin, Fumiaki, Choi, Samuel, Muramatsu, Shogo, Sawamura, Seishiro, Ogata, Genki, Sato, Mitsuo P., Doi, Katsumi, Doi, Kentaro, Tsuji, Tetsuro, Kawano, Satoyuki, Reichenbach, Tobias, Hibino, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 635
container_issue 5
container_start_page 625
container_title Pflügers Archiv
container_volume 472
creator Ota, Takeru
Nin, Fumiaki
Choi, Samuel
Muramatsu, Shogo
Sawamura, Seishiro
Ogata, Genki
Sato, Mitsuo P.
Doi, Katsumi
Doi, Kentaro
Tsuji, Tetsuro
Kawano, Satoyuki
Reichenbach, Tobias
Hibino, Hiroshi
description In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.
doi_str_mv 10.1007/s00424-020-02373-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7239825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405112606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</originalsourceid><addsrcrecordid>eNp9UclOwzAQtRCIluUHOKBIXLgEvMV2LkioYpOQuIA4Wo7jtEFpXGy3iL9naEtZDhys8cy8eTNPD6Ejgs8IxvI8YswpzzHF8JhkudhCQ8IZzSkmbBsNMWYkF1KoAdqL8QVjTLmiu2jAKCNKlnKInkcTE4xNLrTRpNb3mW-yNHFZTJBayJroUtb2y2IKZuG6ru3H2Rv8vsrW20nnTMgqE02XpXnoD9BOY7roDtdxHz1dXz2ObvP7h5u70eV9bgvFU16qQgrK4dxCYVXT2jHOa2Vq4RxRzEgha9kUVEpGSMVdpSpqSiUJV1Y0hrB9dLHinc2rqaut6-HGTs9COzXhXXvT6t-dvp3osV9oSVmpaAEEp2uC4F_nLiY9baMFkaZ3fh41wJiA_SUF6Mkf6IsHqSBPg4SCECqwABRdoWzwMQbXbI4hWH_6ple-afBNL33Tn0PHP2VsRr6MAgBbASK0-rEL37v_of0ABxOi8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405112606</pqid></control><display><type>article</type><title>Characterisation of the static offset in the travelling wave in the cochlear basal turn</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ota, Takeru ; Nin, Fumiaki ; Choi, Samuel ; Muramatsu, Shogo ; Sawamura, Seishiro ; Ogata, Genki ; Sato, Mitsuo P. ; Doi, Katsumi ; Doi, Kentaro ; Tsuji, Tetsuro ; Kawano, Satoyuki ; Reichenbach, Tobias ; Hibino, Hiroshi</creator><creatorcontrib>Ota, Takeru ; Nin, Fumiaki ; Choi, Samuel ; Muramatsu, Shogo ; Sawamura, Seishiro ; Ogata, Genki ; Sato, Mitsuo P. ; Doi, Katsumi ; Doi, Kentaro ; Tsuji, Tetsuro ; Kawano, Satoyuki ; Reichenbach, Tobias ; Hibino, Hiroshi</creatorcontrib><description>In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-020-02373-6</identifier><identifier>PMID: 32318797</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Auditory Threshold ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cochlea ; Contraction ; Guinea Pigs ; Hair cells ; Hair Cells, Auditory, Outer - physiology ; Hair Cells, Vestibular - physiology ; Hearing ; Human Physiology ; Interferometry - instrumentation ; Interferometry - methods ; Male ; Molecular Medicine ; Neurosciences ; Outer hair cells ; Receptors ; Sensory Physiology ; Sound ; Vibration ; Vibrations</subject><ispartof>Pflügers Archiv, 2020-05, Vol.472 (5), p.625-635</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</citedby><cites>FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</cites><orcidid>0000-0003-1753-428X ; 0000-0003-3367-3511 ; 0000-0003-0688-1489 ; 0000-0002-3713-303X ; 0000-0002-2087-5459 ; 0000-0002-2990-1238 ; 0000-0002-0408-7540 ; 0000-0003-0011-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-020-02373-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-020-02373-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32318797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ota, Takeru</creatorcontrib><creatorcontrib>Nin, Fumiaki</creatorcontrib><creatorcontrib>Choi, Samuel</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Sawamura, Seishiro</creatorcontrib><creatorcontrib>Ogata, Genki</creatorcontrib><creatorcontrib>Sato, Mitsuo P.</creatorcontrib><creatorcontrib>Doi, Katsumi</creatorcontrib><creatorcontrib>Doi, Kentaro</creatorcontrib><creatorcontrib>Tsuji, Tetsuro</creatorcontrib><creatorcontrib>Kawano, Satoyuki</creatorcontrib><creatorcontrib>Reichenbach, Tobias</creatorcontrib><creatorcontrib>Hibino, Hiroshi</creatorcontrib><title>Characterisation of the static offset in the travelling wave in the cochlear basal turn</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.</description><subject>Animals</subject><subject>Auditory Threshold</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cochlea</subject><subject>Contraction</subject><subject>Guinea Pigs</subject><subject>Hair cells</subject><subject>Hair Cells, Auditory, Outer - physiology</subject><subject>Hair Cells, Vestibular - physiology</subject><subject>Hearing</subject><subject>Human Physiology</subject><subject>Interferometry - instrumentation</subject><subject>Interferometry - methods</subject><subject>Male</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Outer hair cells</subject><subject>Receptors</subject><subject>Sensory Physiology</subject><subject>Sound</subject><subject>Vibration</subject><subject>Vibrations</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UclOwzAQtRCIluUHOKBIXLgEvMV2LkioYpOQuIA4Wo7jtEFpXGy3iL9naEtZDhys8cy8eTNPD6Ejgs8IxvI8YswpzzHF8JhkudhCQ8IZzSkmbBsNMWYkF1KoAdqL8QVjTLmiu2jAKCNKlnKInkcTE4xNLrTRpNb3mW-yNHFZTJBayJroUtb2y2IKZuG6ru3H2Rv8vsrW20nnTMgqE02XpXnoD9BOY7roDtdxHz1dXz2ObvP7h5u70eV9bgvFU16qQgrK4dxCYVXT2jHOa2Vq4RxRzEgha9kUVEpGSMVdpSpqSiUJV1Y0hrB9dLHinc2rqaut6-HGTs9COzXhXXvT6t-dvp3osV9oSVmpaAEEp2uC4F_nLiY9baMFkaZ3fh41wJiA_SUF6Mkf6IsHqSBPg4SCECqwABRdoWzwMQbXbI4hWH_6ple-afBNL33Tn0PHP2VsRr6MAgBbASK0-rEL37v_of0ABxOi8w</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ota, Takeru</creator><creator>Nin, Fumiaki</creator><creator>Choi, Samuel</creator><creator>Muramatsu, Shogo</creator><creator>Sawamura, Seishiro</creator><creator>Ogata, Genki</creator><creator>Sato, Mitsuo P.</creator><creator>Doi, Katsumi</creator><creator>Doi, Kentaro</creator><creator>Tsuji, Tetsuro</creator><creator>Kawano, Satoyuki</creator><creator>Reichenbach, Tobias</creator><creator>Hibino, Hiroshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1753-428X</orcidid><orcidid>https://orcid.org/0000-0003-3367-3511</orcidid><orcidid>https://orcid.org/0000-0003-0688-1489</orcidid><orcidid>https://orcid.org/0000-0002-3713-303X</orcidid><orcidid>https://orcid.org/0000-0002-2087-5459</orcidid><orcidid>https://orcid.org/0000-0002-2990-1238</orcidid><orcidid>https://orcid.org/0000-0002-0408-7540</orcidid><orcidid>https://orcid.org/0000-0003-0011-8925</orcidid></search><sort><creationdate>20200501</creationdate><title>Characterisation of the static offset in the travelling wave in the cochlear basal turn</title><author>Ota, Takeru ; Nin, Fumiaki ; Choi, Samuel ; Muramatsu, Shogo ; Sawamura, Seishiro ; Ogata, Genki ; Sato, Mitsuo P. ; Doi, Katsumi ; Doi, Kentaro ; Tsuji, Tetsuro ; Kawano, Satoyuki ; Reichenbach, Tobias ; Hibino, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Auditory Threshold</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cochlea</topic><topic>Contraction</topic><topic>Guinea Pigs</topic><topic>Hair cells</topic><topic>Hair Cells, Auditory, Outer - physiology</topic><topic>Hair Cells, Vestibular - physiology</topic><topic>Hearing</topic><topic>Human Physiology</topic><topic>Interferometry - instrumentation</topic><topic>Interferometry - methods</topic><topic>Male</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Outer hair cells</topic><topic>Receptors</topic><topic>Sensory Physiology</topic><topic>Sound</topic><topic>Vibration</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ota, Takeru</creatorcontrib><creatorcontrib>Nin, Fumiaki</creatorcontrib><creatorcontrib>Choi, Samuel</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Sawamura, Seishiro</creatorcontrib><creatorcontrib>Ogata, Genki</creatorcontrib><creatorcontrib>Sato, Mitsuo P.</creatorcontrib><creatorcontrib>Doi, Katsumi</creatorcontrib><creatorcontrib>Doi, Kentaro</creatorcontrib><creatorcontrib>Tsuji, Tetsuro</creatorcontrib><creatorcontrib>Kawano, Satoyuki</creatorcontrib><creatorcontrib>Reichenbach, Tobias</creatorcontrib><creatorcontrib>Hibino, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ota, Takeru</au><au>Nin, Fumiaki</au><au>Choi, Samuel</au><au>Muramatsu, Shogo</au><au>Sawamura, Seishiro</au><au>Ogata, Genki</au><au>Sato, Mitsuo P.</au><au>Doi, Katsumi</au><au>Doi, Kentaro</au><au>Tsuji, Tetsuro</au><au>Kawano, Satoyuki</au><au>Reichenbach, Tobias</au><au>Hibino, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of the static offset in the travelling wave in the cochlear basal turn</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>472</volume><issue>5</issue><spage>625</spage><epage>635</epage><pages>625-635</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32318797</pmid><doi>10.1007/s00424-020-02373-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1753-428X</orcidid><orcidid>https://orcid.org/0000-0003-3367-3511</orcidid><orcidid>https://orcid.org/0000-0003-0688-1489</orcidid><orcidid>https://orcid.org/0000-0002-3713-303X</orcidid><orcidid>https://orcid.org/0000-0002-2087-5459</orcidid><orcidid>https://orcid.org/0000-0002-2990-1238</orcidid><orcidid>https://orcid.org/0000-0002-0408-7540</orcidid><orcidid>https://orcid.org/0000-0003-0011-8925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2020-05, Vol.472 (5), p.625-635
issn 0031-6768
1432-2013
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7239825
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Auditory Threshold
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cochlea
Contraction
Guinea Pigs
Hair cells
Hair Cells, Auditory, Outer - physiology
Hair Cells, Vestibular - physiology
Hearing
Human Physiology
Interferometry - instrumentation
Interferometry - methods
Male
Molecular Medicine
Neurosciences
Outer hair cells
Receptors
Sensory Physiology
Sound
Vibration
Vibrations
title Characterisation of the static offset in the travelling wave in the cochlear basal turn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20the%20static%20offset%20in%20the%20travelling%20wave%20in%20the%20cochlear%20basal%20turn&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Ota,%20Takeru&rft.date=2020-05-01&rft.volume=472&rft.issue=5&rft.spage=625&rft.epage=635&rft.pages=625-635&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-020-02373-6&rft_dat=%3Cproquest_pubme%3E2405112606%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405112606&rft_id=info:pmid/32318797&rfr_iscdi=true