Characterisation of the static offset in the travelling wave in the cochlear basal turn
In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2020-05, Vol.472 (5), p.625-635 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 635 |
---|---|
container_issue | 5 |
container_start_page | 625 |
container_title | Pflügers Archiv |
container_volume | 472 |
creator | Ota, Takeru Nin, Fumiaki Choi, Samuel Muramatsu, Shogo Sawamura, Seishiro Ogata, Genki Sato, Mitsuo P. Doi, Katsumi Doi, Kentaro Tsuji, Tetsuro Kawano, Satoyuki Reichenbach, Tobias Hibino, Hiroshi |
description | In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells. |
doi_str_mv | 10.1007/s00424-020-02373-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7239825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405112606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</originalsourceid><addsrcrecordid>eNp9UclOwzAQtRCIluUHOKBIXLgEvMV2LkioYpOQuIA4Wo7jtEFpXGy3iL9naEtZDhys8cy8eTNPD6Ejgs8IxvI8YswpzzHF8JhkudhCQ8IZzSkmbBsNMWYkF1KoAdqL8QVjTLmiu2jAKCNKlnKInkcTE4xNLrTRpNb3mW-yNHFZTJBayJroUtb2y2IKZuG6ru3H2Rv8vsrW20nnTMgqE02XpXnoD9BOY7roDtdxHz1dXz2ObvP7h5u70eV9bgvFU16qQgrK4dxCYVXT2jHOa2Vq4RxRzEgha9kUVEpGSMVdpSpqSiUJV1Y0hrB9dLHinc2rqaut6-HGTs9COzXhXXvT6t-dvp3osV9oSVmpaAEEp2uC4F_nLiY9baMFkaZ3fh41wJiA_SUF6Mkf6IsHqSBPg4SCECqwABRdoWzwMQbXbI4hWH_6ple-afBNL33Tn0PHP2VsRr6MAgBbASK0-rEL37v_of0ABxOi8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405112606</pqid></control><display><type>article</type><title>Characterisation of the static offset in the travelling wave in the cochlear basal turn</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ota, Takeru ; Nin, Fumiaki ; Choi, Samuel ; Muramatsu, Shogo ; Sawamura, Seishiro ; Ogata, Genki ; Sato, Mitsuo P. ; Doi, Katsumi ; Doi, Kentaro ; Tsuji, Tetsuro ; Kawano, Satoyuki ; Reichenbach, Tobias ; Hibino, Hiroshi</creator><creatorcontrib>Ota, Takeru ; Nin, Fumiaki ; Choi, Samuel ; Muramatsu, Shogo ; Sawamura, Seishiro ; Ogata, Genki ; Sato, Mitsuo P. ; Doi, Katsumi ; Doi, Kentaro ; Tsuji, Tetsuro ; Kawano, Satoyuki ; Reichenbach, Tobias ; Hibino, Hiroshi</creatorcontrib><description>In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-020-02373-6</identifier><identifier>PMID: 32318797</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Auditory Threshold ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cochlea ; Contraction ; Guinea Pigs ; Hair cells ; Hair Cells, Auditory, Outer - physiology ; Hair Cells, Vestibular - physiology ; Hearing ; Human Physiology ; Interferometry - instrumentation ; Interferometry - methods ; Male ; Molecular Medicine ; Neurosciences ; Outer hair cells ; Receptors ; Sensory Physiology ; Sound ; Vibration ; Vibrations</subject><ispartof>Pflügers Archiv, 2020-05, Vol.472 (5), p.625-635</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</citedby><cites>FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</cites><orcidid>0000-0003-1753-428X ; 0000-0003-3367-3511 ; 0000-0003-0688-1489 ; 0000-0002-3713-303X ; 0000-0002-2087-5459 ; 0000-0002-2990-1238 ; 0000-0002-0408-7540 ; 0000-0003-0011-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-020-02373-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-020-02373-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32318797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ota, Takeru</creatorcontrib><creatorcontrib>Nin, Fumiaki</creatorcontrib><creatorcontrib>Choi, Samuel</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Sawamura, Seishiro</creatorcontrib><creatorcontrib>Ogata, Genki</creatorcontrib><creatorcontrib>Sato, Mitsuo P.</creatorcontrib><creatorcontrib>Doi, Katsumi</creatorcontrib><creatorcontrib>Doi, Kentaro</creatorcontrib><creatorcontrib>Tsuji, Tetsuro</creatorcontrib><creatorcontrib>Kawano, Satoyuki</creatorcontrib><creatorcontrib>Reichenbach, Tobias</creatorcontrib><creatorcontrib>Hibino, Hiroshi</creatorcontrib><title>Characterisation of the static offset in the travelling wave in the cochlear basal turn</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.</description><subject>Animals</subject><subject>Auditory Threshold</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cochlea</subject><subject>Contraction</subject><subject>Guinea Pigs</subject><subject>Hair cells</subject><subject>Hair Cells, Auditory, Outer - physiology</subject><subject>Hair Cells, Vestibular - physiology</subject><subject>Hearing</subject><subject>Human Physiology</subject><subject>Interferometry - instrumentation</subject><subject>Interferometry - methods</subject><subject>Male</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Outer hair cells</subject><subject>Receptors</subject><subject>Sensory Physiology</subject><subject>Sound</subject><subject>Vibration</subject><subject>Vibrations</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UclOwzAQtRCIluUHOKBIXLgEvMV2LkioYpOQuIA4Wo7jtEFpXGy3iL9naEtZDhys8cy8eTNPD6Ejgs8IxvI8YswpzzHF8JhkudhCQ8IZzSkmbBsNMWYkF1KoAdqL8QVjTLmiu2jAKCNKlnKInkcTE4xNLrTRpNb3mW-yNHFZTJBayJroUtb2y2IKZuG6ru3H2Rv8vsrW20nnTMgqE02XpXnoD9BOY7roDtdxHz1dXz2ObvP7h5u70eV9bgvFU16qQgrK4dxCYVXT2jHOa2Vq4RxRzEgha9kUVEpGSMVdpSpqSiUJV1Y0hrB9dLHinc2rqaut6-HGTs9COzXhXXvT6t-dvp3osV9oSVmpaAEEp2uC4F_nLiY9baMFkaZ3fh41wJiA_SUF6Mkf6IsHqSBPg4SCECqwABRdoWzwMQbXbI4hWH_6ple-afBNL33Tn0PHP2VsRr6MAgBbASK0-rEL37v_of0ABxOi8w</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ota, Takeru</creator><creator>Nin, Fumiaki</creator><creator>Choi, Samuel</creator><creator>Muramatsu, Shogo</creator><creator>Sawamura, Seishiro</creator><creator>Ogata, Genki</creator><creator>Sato, Mitsuo P.</creator><creator>Doi, Katsumi</creator><creator>Doi, Kentaro</creator><creator>Tsuji, Tetsuro</creator><creator>Kawano, Satoyuki</creator><creator>Reichenbach, Tobias</creator><creator>Hibino, Hiroshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1753-428X</orcidid><orcidid>https://orcid.org/0000-0003-3367-3511</orcidid><orcidid>https://orcid.org/0000-0003-0688-1489</orcidid><orcidid>https://orcid.org/0000-0002-3713-303X</orcidid><orcidid>https://orcid.org/0000-0002-2087-5459</orcidid><orcidid>https://orcid.org/0000-0002-2990-1238</orcidid><orcidid>https://orcid.org/0000-0002-0408-7540</orcidid><orcidid>https://orcid.org/0000-0003-0011-8925</orcidid></search><sort><creationdate>20200501</creationdate><title>Characterisation of the static offset in the travelling wave in the cochlear basal turn</title><author>Ota, Takeru ; Nin, Fumiaki ; Choi, Samuel ; Muramatsu, Shogo ; Sawamura, Seishiro ; Ogata, Genki ; Sato, Mitsuo P. ; Doi, Katsumi ; Doi, Kentaro ; Tsuji, Tetsuro ; Kawano, Satoyuki ; Reichenbach, Tobias ; Hibino, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-98576240135808d2de344d8ad6ee183a767d7f5277311b4eb8b2a987148c6fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Auditory Threshold</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cochlea</topic><topic>Contraction</topic><topic>Guinea Pigs</topic><topic>Hair cells</topic><topic>Hair Cells, Auditory, Outer - physiology</topic><topic>Hair Cells, Vestibular - physiology</topic><topic>Hearing</topic><topic>Human Physiology</topic><topic>Interferometry - instrumentation</topic><topic>Interferometry - methods</topic><topic>Male</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Outer hair cells</topic><topic>Receptors</topic><topic>Sensory Physiology</topic><topic>Sound</topic><topic>Vibration</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ota, Takeru</creatorcontrib><creatorcontrib>Nin, Fumiaki</creatorcontrib><creatorcontrib>Choi, Samuel</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Sawamura, Seishiro</creatorcontrib><creatorcontrib>Ogata, Genki</creatorcontrib><creatorcontrib>Sato, Mitsuo P.</creatorcontrib><creatorcontrib>Doi, Katsumi</creatorcontrib><creatorcontrib>Doi, Kentaro</creatorcontrib><creatorcontrib>Tsuji, Tetsuro</creatorcontrib><creatorcontrib>Kawano, Satoyuki</creatorcontrib><creatorcontrib>Reichenbach, Tobias</creatorcontrib><creatorcontrib>Hibino, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ota, Takeru</au><au>Nin, Fumiaki</au><au>Choi, Samuel</au><au>Muramatsu, Shogo</au><au>Sawamura, Seishiro</au><au>Ogata, Genki</au><au>Sato, Mitsuo P.</au><au>Doi, Katsumi</au><au>Doi, Kentaro</au><au>Tsuji, Tetsuro</au><au>Kawano, Satoyuki</au><au>Reichenbach, Tobias</au><au>Hibino, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of the static offset in the travelling wave in the cochlear basal turn</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>472</volume><issue>5</issue><spage>625</spage><epage>635</epage><pages>625-635</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32318797</pmid><doi>10.1007/s00424-020-02373-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1753-428X</orcidid><orcidid>https://orcid.org/0000-0003-3367-3511</orcidid><orcidid>https://orcid.org/0000-0003-0688-1489</orcidid><orcidid>https://orcid.org/0000-0002-3713-303X</orcidid><orcidid>https://orcid.org/0000-0002-2087-5459</orcidid><orcidid>https://orcid.org/0000-0002-2990-1238</orcidid><orcidid>https://orcid.org/0000-0002-0408-7540</orcidid><orcidid>https://orcid.org/0000-0003-0011-8925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2020-05, Vol.472 (5), p.625-635 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7239825 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Auditory Threshold Biomedical and Life Sciences Biomedicine Cell Biology Cochlea Contraction Guinea Pigs Hair cells Hair Cells, Auditory, Outer - physiology Hair Cells, Vestibular - physiology Hearing Human Physiology Interferometry - instrumentation Interferometry - methods Male Molecular Medicine Neurosciences Outer hair cells Receptors Sensory Physiology Sound Vibration Vibrations |
title | Characterisation of the static offset in the travelling wave in the cochlear basal turn |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20the%20static%20offset%20in%20the%20travelling%20wave%20in%20the%20cochlear%20basal%20turn&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Ota,%20Takeru&rft.date=2020-05-01&rft.volume=472&rft.issue=5&rft.spage=625&rft.epage=635&rft.pages=625-635&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-020-02373-6&rft_dat=%3Cproquest_pubme%3E2405112606%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405112606&rft_id=info:pmid/32318797&rfr_iscdi=true |