Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer

A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Disease markers 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Feng, Yuao, Wu, Shengjie, Chen, Liping, Lu, Guangrong, Lin, Tiesu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title Disease markers
container_volume 2020
creator Feng, Yuao
Wu, Shengjie
Chen, Liping
Lu, Guangrong
Lin, Tiesu
description A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score=−1.86∗plasma+2.56∗T cell follicular helper−1.37∗monocytes−3.64∗activated dendritic cells−2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p=0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.
doi_str_mv 10.1155/2020/8974793
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627689536</galeid><sourcerecordid>A627689536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-584b8f742d08a70cf96837f34d0a66566eca685213b234b349527027639ee5143</originalsourceid><addsrcrecordid>eNqN0c-L1DAUB_Agijuu3jxLwKPWTfM7F2Eoqw4sCDqeQ6Z97WRp05q0I_Pfm2HGXb15yuF9-PLyvgi9LsmHshTihhJKbrRRXBn2BK1KrUShJSNP0YpQpQtCOblCL1K6J6Skhpvn6IpRLrgheoWmahymCHsIyR8Ar4Prj8knPLZ4uwxjLDah9f0c3exDhzfDsATAFfR9wi40-Bv0cHBhxts9RDfBMvsafz9x6I7YB3ybxmnvOnA9rlyoIb5Ez1rXJ3h1ea_Rj0-32-pLcff186Za3xU1N2YuhOY73SpOG6KdInVrpGaqZbwhTkohJdROakFLtqOM7xg3gqr8X8kMgCg5u0Yfz7nTshugqSHkrXo7RT-4eLSj8_bfSfB7240HqyjTjJ0C3l4C4vhzgTTb-3GJ-T7J5otKqqgw6lF1rgfrQzvmsHrwqbbrbKQ2gsms3p9VHceUIrQPe5TEnlq0pxbtpcXM3_y9-wP-U1sG785g70Pjfvn_jINsoHWPuhScEs5-AwWerf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406272597</pqid></control><display><type>article</type><title>Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Feng, Yuao ; Wu, Shengjie ; Chen, Liping ; Lu, Guangrong ; Lin, Tiesu</creator><contributor>Knaś, Małgorzata ; Małgorzata Knaś</contributor><creatorcontrib>Feng, Yuao ; Wu, Shengjie ; Chen, Liping ; Lu, Guangrong ; Lin, Tiesu ; Knaś, Małgorzata ; Małgorzata Knaś</creatorcontrib><description>A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score=−1.86∗plasma+2.56∗T cell follicular helper−1.37∗monocytes−3.64∗activated dendritic cells−2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p=0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.</description><identifier>ISSN: 0278-0240</identifier><identifier>EISSN: 1875-8630</identifier><identifier>DOI: 10.1155/2020/8974793</identifier><identifier>PMID: 32454908</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adult ; Algorithms ; Analysis ; Antineoplastic Agents - therapeutic use ; Atrophy ; B cells ; Cancer ; Cancer therapies ; Cell Count ; Connectivity ; Correlation analysis ; Databases, Factual ; Dendritic cells ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - pathology ; Esophageal cancer ; Esophageal Neoplasms - diagnosis ; Esophageal Neoplasms - drug therapy ; Esophageal Neoplasms - immunology ; Esophageal Neoplasms - mortality ; Esophagus ; Female ; Gender ; Gene Expression ; Genes ; Health aspects ; Humans ; Immune system ; Lymph nodes ; Lymph Nodes - drug effects ; Lymph Nodes - immunology ; Lymph Nodes - pathology ; Lymphocytes ; Lymphocytes T ; Lymphocytes, Tumor-Infiltrating - drug effects ; Lymphocytes, Tumor-Infiltrating - immunology ; Lymphocytes, Tumor-Infiltrating - pathology ; Male ; Mast cells ; Mast Cells - drug effects ; Mast Cells - immunology ; Mast Cells - pathology ; Medical prognosis ; Metastases ; Middle Aged ; Monocytes ; Monocytes - drug effects ; Monocytes - immunology ; Monocytes - pathology ; Mutation ; Neoplasm Staging ; p53 Protein ; Plasma Cells - drug effects ; Plasma Cells - immunology ; Plasma Cells - pathology ; Prognosis ; Rapamycin ; Receptors, LDL - genetics ; Receptors, LDL - immunology ; Regression Analysis ; Risk analysis ; Risk groups ; Semustine - therapeutic use ; Sirolimus - therapeutic use ; Survival Analysis ; T cells ; T Follicular Helper Cells - drug effects ; T Follicular Helper Cells - immunology ; T Follicular Helper Cells - pathology ; Tumor cells ; Tumor Microenvironment - drug effects ; Tumor Microenvironment - genetics ; Tumor Microenvironment - immunology ; Tumor proteins ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - immunology ; Tumor-infiltrating lymphocytes ; Tumors</subject><ispartof>Disease markers, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Guangrong Lu et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Guangrong Lu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Guangrong Lu et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-584b8f742d08a70cf96837f34d0a66566eca685213b234b349527027639ee5143</citedby><cites>FETCH-LOGICAL-c499t-584b8f742d08a70cf96837f34d0a66566eca685213b234b349527027639ee5143</cites><orcidid>0000-0001-6087-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238334/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238334/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32454908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Knaś, Małgorzata</contributor><contributor>Małgorzata Knaś</contributor><creatorcontrib>Feng, Yuao</creatorcontrib><creatorcontrib>Wu, Shengjie</creatorcontrib><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Lu, Guangrong</creatorcontrib><creatorcontrib>Lin, Tiesu</creatorcontrib><title>Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer</title><title>Disease markers</title><addtitle>Dis Markers</addtitle><description>A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score=−1.86∗plasma+2.56∗T cell follicular helper−1.37∗monocytes−3.64∗activated dendritic cells−2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p=0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Atrophy</subject><subject>B cells</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell Count</subject><subject>Connectivity</subject><subject>Correlation analysis</subject><subject>Databases, Factual</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - pathology</subject><subject>Esophageal cancer</subject><subject>Esophageal Neoplasms - diagnosis</subject><subject>Esophageal Neoplasms - drug therapy</subject><subject>Esophageal Neoplasms - immunology</subject><subject>Esophageal Neoplasms - mortality</subject><subject>Esophagus</subject><subject>Female</subject><subject>Gender</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune system</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - drug effects</subject><subject>Lymph Nodes - immunology</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytes, Tumor-Infiltrating - drug effects</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Lymphocytes, Tumor-Infiltrating - pathology</subject><subject>Male</subject><subject>Mast cells</subject><subject>Mast Cells - drug effects</subject><subject>Mast Cells - immunology</subject><subject>Mast Cells - pathology</subject><subject>Medical prognosis</subject><subject>Metastases</subject><subject>Middle Aged</subject><subject>Monocytes</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Monocytes - pathology</subject><subject>Mutation</subject><subject>Neoplasm Staging</subject><subject>p53 Protein</subject><subject>Plasma Cells - drug effects</subject><subject>Plasma Cells - immunology</subject><subject>Plasma Cells - pathology</subject><subject>Prognosis</subject><subject>Rapamycin</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, LDL - immunology</subject><subject>Regression Analysis</subject><subject>Risk analysis</subject><subject>Risk groups</subject><subject>Semustine - therapeutic use</subject><subject>Sirolimus - therapeutic use</subject><subject>Survival Analysis</subject><subject>T cells</subject><subject>T Follicular Helper Cells - drug effects</subject><subject>T Follicular Helper Cells - immunology</subject><subject>T Follicular Helper Cells - pathology</subject><subject>Tumor cells</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor Microenvironment - genetics</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - immunology</subject><subject>Tumor-infiltrating lymphocytes</subject><subject>Tumors</subject><issn>0278-0240</issn><issn>1875-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c-L1DAUB_Agijuu3jxLwKPWTfM7F2Eoqw4sCDqeQ6Z97WRp05q0I_Pfm2HGXb15yuF9-PLyvgi9LsmHshTihhJKbrRRXBn2BK1KrUShJSNP0YpQpQtCOblCL1K6J6Skhpvn6IpRLrgheoWmahymCHsIyR8Ar4Prj8knPLZ4uwxjLDah9f0c3exDhzfDsATAFfR9wi40-Bv0cHBhxts9RDfBMvsafz9x6I7YB3ybxmnvOnA9rlyoIb5Ez1rXJ3h1ea_Rj0-32-pLcff186Za3xU1N2YuhOY73SpOG6KdInVrpGaqZbwhTkohJdROakFLtqOM7xg3gqr8X8kMgCg5u0Yfz7nTshugqSHkrXo7RT-4eLSj8_bfSfB7240HqyjTjJ0C3l4C4vhzgTTb-3GJ-T7J5otKqqgw6lF1rgfrQzvmsHrwqbbrbKQ2gsms3p9VHceUIrQPe5TEnlq0pxbtpcXM3_y9-wP-U1sG785g70Pjfvn_jINsoHWPuhScEs5-AwWerf8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Feng, Yuao</creator><creator>Wu, Shengjie</creator><creator>Chen, Liping</creator><creator>Lu, Guangrong</creator><creator>Lin, Tiesu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6087-7355</orcidid></search><sort><creationdate>2020</creationdate><title>Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer</title><author>Feng, Yuao ; Wu, Shengjie ; Chen, Liping ; Lu, Guangrong ; Lin, Tiesu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-584b8f742d08a70cf96837f34d0a66566eca685213b234b349527027639ee5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Atrophy</topic><topic>B cells</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell Count</topic><topic>Connectivity</topic><topic>Correlation analysis</topic><topic>Databases, Factual</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - pathology</topic><topic>Esophageal cancer</topic><topic>Esophageal Neoplasms - diagnosis</topic><topic>Esophageal Neoplasms - drug therapy</topic><topic>Esophageal Neoplasms - immunology</topic><topic>Esophageal Neoplasms - mortality</topic><topic>Esophagus</topic><topic>Female</topic><topic>Gender</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune system</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - drug effects</topic><topic>Lymph Nodes - immunology</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytes, Tumor-Infiltrating - drug effects</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Lymphocytes, Tumor-Infiltrating - pathology</topic><topic>Male</topic><topic>Mast cells</topic><topic>Mast Cells - drug effects</topic><topic>Mast Cells - immunology</topic><topic>Mast Cells - pathology</topic><topic>Medical prognosis</topic><topic>Metastases</topic><topic>Middle Aged</topic><topic>Monocytes</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Monocytes - pathology</topic><topic>Mutation</topic><topic>Neoplasm Staging</topic><topic>p53 Protein</topic><topic>Plasma Cells - drug effects</topic><topic>Plasma Cells - immunology</topic><topic>Plasma Cells - pathology</topic><topic>Prognosis</topic><topic>Rapamycin</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, LDL - immunology</topic><topic>Regression Analysis</topic><topic>Risk analysis</topic><topic>Risk groups</topic><topic>Semustine - therapeutic use</topic><topic>Sirolimus - therapeutic use</topic><topic>Survival Analysis</topic><topic>T cells</topic><topic>T Follicular Helper Cells - drug effects</topic><topic>T Follicular Helper Cells - immunology</topic><topic>T Follicular Helper Cells - pathology</topic><topic>Tumor cells</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor Microenvironment - genetics</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - immunology</topic><topic>Tumor-infiltrating lymphocytes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yuao</creatorcontrib><creatorcontrib>Wu, Shengjie</creatorcontrib><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Lu, Guangrong</creatorcontrib><creatorcontrib>Lin, Tiesu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Disease markers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yuao</au><au>Wu, Shengjie</au><au>Chen, Liping</au><au>Lu, Guangrong</au><au>Lin, Tiesu</au><au>Knaś, Małgorzata</au><au>Małgorzata Knaś</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer</atitle><jtitle>Disease markers</jtitle><addtitle>Dis Markers</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0278-0240</issn><eissn>1875-8630</eissn><abstract>A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score=−1.86∗plasma+2.56∗T cell follicular helper−1.37∗monocytes−3.64∗activated dendritic cells−2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p=0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32454908</pmid><doi>10.1155/2020/8974793</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6087-7355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0240
ispartof Disease markers, 2020, Vol.2020 (2020), p.1-12
issn 0278-0240
1875-8630
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238334
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Adult
Algorithms
Analysis
Antineoplastic Agents - therapeutic use
Atrophy
B cells
Cancer
Cancer therapies
Cell Count
Connectivity
Correlation analysis
Databases, Factual
Dendritic cells
Dendritic Cells - drug effects
Dendritic Cells - immunology
Dendritic Cells - pathology
Esophageal cancer
Esophageal Neoplasms - diagnosis
Esophageal Neoplasms - drug therapy
Esophageal Neoplasms - immunology
Esophageal Neoplasms - mortality
Esophagus
Female
Gender
Gene Expression
Genes
Health aspects
Humans
Immune system
Lymph nodes
Lymph Nodes - drug effects
Lymph Nodes - immunology
Lymph Nodes - pathology
Lymphocytes
Lymphocytes T
Lymphocytes, Tumor-Infiltrating - drug effects
Lymphocytes, Tumor-Infiltrating - immunology
Lymphocytes, Tumor-Infiltrating - pathology
Male
Mast cells
Mast Cells - drug effects
Mast Cells - immunology
Mast Cells - pathology
Medical prognosis
Metastases
Middle Aged
Monocytes
Monocytes - drug effects
Monocytes - immunology
Monocytes - pathology
Mutation
Neoplasm Staging
p53 Protein
Plasma Cells - drug effects
Plasma Cells - immunology
Plasma Cells - pathology
Prognosis
Rapamycin
Receptors, LDL - genetics
Receptors, LDL - immunology
Regression Analysis
Risk analysis
Risk groups
Semustine - therapeutic use
Sirolimus - therapeutic use
Survival Analysis
T cells
T Follicular Helper Cells - drug effects
T Follicular Helper Cells - immunology
T Follicular Helper Cells - pathology
Tumor cells
Tumor Microenvironment - drug effects
Tumor Microenvironment - genetics
Tumor Microenvironment - immunology
Tumor proteins
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - immunology
Tumor-infiltrating lymphocytes
Tumors
title Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Analysis%20of%20Tumor-Infiltrating%20Immune%20Cells%20and%20Relevant%20Therapeutic%20Strategy%20in%20Esophageal%20Cancer&rft.jtitle=Disease%20markers&rft.au=Feng,%20Yuao&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0278-0240&rft.eissn=1875-8630&rft_id=info:doi/10.1155/2020/8974793&rft_dat=%3Cgale_pubme%3EA627689536%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406272597&rft_id=info:pmid/32454908&rft_galeid=A627689536&rfr_iscdi=true