MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate

Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2020-05, Vol.181 (4), p.922-935.e21
Hauptverfasser: Sladitschek, Hanna L., Fiuza, Ulla-Maj, Pavlinic, Dinko, Benes, Vladimir, Hufnagel, Lars, Neveu, Pierre A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935.e21
container_issue 4
container_start_page 922
container_title Cell
container_volume 181
creator Sladitschek, Hanna L.
Fiuza, Ulla-Maj
Pavlinic, Dinko
Benes, Vladimir
Hufnagel, Lars
Neveu, Pierre A.
description Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell’s physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing. [Display omitted] •Integration of scRNA-seq and imaging data yield a canonical digital embryo•Cell type classification without prior knowledge•De novo reconstruction of the lineage history and spatial organization of the embryo•Timing differences contribute to inter-embryo variability in gene expression The complete gene expression history and physical position of every single cell at every cell division in an embryo up to gastrulation is reconstructed using a combination of single-cell transcriptomics and light sheet imaging.
doi_str_mv 10.1016/j.cell.2020.03.055
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420303482</els_id><sourcerecordid>2393653435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a92a70572ab1ed625e2a5d44005aaf6d35aa72c4dd852fe3496ae322db1be7053</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhC3BAPnJJ8N94gxASWmhBKuKw7dmatWe7XiV2aieV-u1JtKWCC6c5zHu_Gb1HyFvOas548-FYO-y6WjDBaiZrpvUzsuKsNZXiRjwnK8ZaUa0bo87Iq1KOjLG11volOZNCct1wsyLbnykPh7TFu4_0Yuo6ug3xtsNqM5PpdYZYXA7DmHqkXx8i9MEVejPQMdFLKGOeOhhDijRECnRzSNnDiK_Jiz10Bd88znNyc_HtevO9uvp1-WPz5apySuuxglaAYdoI2HH0jdAoQHulGNMA-8bLeRjhlPdrLfYoVdsASiH8ju9wNspz8vnEHaZdj95hHDN0dsihh_xgEwT77yaGg71N99YIadaNmgHvHwE53U1YRtuHsmQKEdNUrJCtbLRUcrklTlKXUykZ909nOLNLG_ZoF6dd2rBM2rmN2fTu7wefLH_inwWfTgKcY7oPmG1xAaNDHzK60foU_sf_DZaKnIo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393653435</pqid></control><display><type>article</type><title>MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sladitschek, Hanna L. ; Fiuza, Ulla-Maj ; Pavlinic, Dinko ; Benes, Vladimir ; Hufnagel, Lars ; Neveu, Pierre A.</creator><creatorcontrib>Sladitschek, Hanna L. ; Fiuza, Ulla-Maj ; Pavlinic, Dinko ; Benes, Vladimir ; Hufnagel, Lars ; Neveu, Pierre A.</creatorcontrib><description>Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell’s physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing. [Display omitted] •Integration of scRNA-seq and imaging data yield a canonical digital embryo•Cell type classification without prior knowledge•De novo reconstruction of the lineage history and spatial organization of the embryo•Timing differences contribute to inter-embryo variability in gene expression The complete gene expression history and physical position of every single cell at every cell division in an embryo up to gastrulation is reconstructed using a combination of single-cell transcriptomics and light sheet imaging.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.03.055</identifier><identifier>PMID: 32315617</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; ascidian ; cell fate specification ; Cell Lineage - genetics ; cell type classification ; Chordata - genetics ; Computational Biology - methods ; embryogenesis ; Gastrulation - genetics ; gene expression noise ; Gene Expression Profiling - methods ; Gene Expression Regulation, Developmental - genetics ; light sheet imaging ; lineage reconstruction ; Reproducibility of Results ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods ; single-cell RNA sequencing ; spatial reconstruction ; Transcriptome - genetics ; Urochordata - genetics</subject><ispartof>Cell, 2020-05, Vol.181 (4), p.922-935.e21</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a92a70572ab1ed625e2a5d44005aaf6d35aa72c4dd852fe3496ae322db1be7053</citedby><cites>FETCH-LOGICAL-c455t-a92a70572ab1ed625e2a5d44005aaf6d35aa72c4dd852fe3496ae322db1be7053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2020.03.055$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32315617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sladitschek, Hanna L.</creatorcontrib><creatorcontrib>Fiuza, Ulla-Maj</creatorcontrib><creatorcontrib>Pavlinic, Dinko</creatorcontrib><creatorcontrib>Benes, Vladimir</creatorcontrib><creatorcontrib>Hufnagel, Lars</creatorcontrib><creatorcontrib>Neveu, Pierre A.</creatorcontrib><title>MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate</title><title>Cell</title><addtitle>Cell</addtitle><description>Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell’s physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing. [Display omitted] •Integration of scRNA-seq and imaging data yield a canonical digital embryo•Cell type classification without prior knowledge•De novo reconstruction of the lineage history and spatial organization of the embryo•Timing differences contribute to inter-embryo variability in gene expression The complete gene expression history and physical position of every single cell at every cell division in an embryo up to gastrulation is reconstructed using a combination of single-cell transcriptomics and light sheet imaging.</description><subject>Animals</subject><subject>ascidian</subject><subject>cell fate specification</subject><subject>Cell Lineage - genetics</subject><subject>cell type classification</subject><subject>Chordata - genetics</subject><subject>Computational Biology - methods</subject><subject>embryogenesis</subject><subject>Gastrulation - genetics</subject><subject>gene expression noise</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>light sheet imaging</subject><subject>lineage reconstruction</subject><subject>Reproducibility of Results</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>single-cell RNA sequencing</subject><subject>spatial reconstruction</subject><subject>Transcriptome - genetics</subject><subject>Urochordata - genetics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhC3BAPnJJ8N94gxASWmhBKuKw7dmatWe7XiV2aieV-u1JtKWCC6c5zHu_Gb1HyFvOas548-FYO-y6WjDBaiZrpvUzsuKsNZXiRjwnK8ZaUa0bo87Iq1KOjLG11volOZNCct1wsyLbnykPh7TFu4_0Yuo6ug3xtsNqM5PpdYZYXA7DmHqkXx8i9MEVejPQMdFLKGOeOhhDijRECnRzSNnDiK_Jiz10Bd88znNyc_HtevO9uvp1-WPz5apySuuxglaAYdoI2HH0jdAoQHulGNMA-8bLeRjhlPdrLfYoVdsASiH8ju9wNspz8vnEHaZdj95hHDN0dsihh_xgEwT77yaGg71N99YIadaNmgHvHwE53U1YRtuHsmQKEdNUrJCtbLRUcrklTlKXUykZ909nOLNLG_ZoF6dd2rBM2rmN2fTu7wefLH_inwWfTgKcY7oPmG1xAaNDHzK60foU_sf_DZaKnIo</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Sladitschek, Hanna L.</creator><creator>Fiuza, Ulla-Maj</creator><creator>Pavlinic, Dinko</creator><creator>Benes, Vladimir</creator><creator>Hufnagel, Lars</creator><creator>Neveu, Pierre A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200514</creationdate><title>MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate</title><author>Sladitschek, Hanna L. ; Fiuza, Ulla-Maj ; Pavlinic, Dinko ; Benes, Vladimir ; Hufnagel, Lars ; Neveu, Pierre A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a92a70572ab1ed625e2a5d44005aaf6d35aa72c4dd852fe3496ae322db1be7053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>ascidian</topic><topic>cell fate specification</topic><topic>Cell Lineage - genetics</topic><topic>cell type classification</topic><topic>Chordata - genetics</topic><topic>Computational Biology - methods</topic><topic>embryogenesis</topic><topic>Gastrulation - genetics</topic><topic>gene expression noise</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>light sheet imaging</topic><topic>lineage reconstruction</topic><topic>Reproducibility of Results</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>single-cell RNA sequencing</topic><topic>spatial reconstruction</topic><topic>Transcriptome - genetics</topic><topic>Urochordata - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sladitschek, Hanna L.</creatorcontrib><creatorcontrib>Fiuza, Ulla-Maj</creatorcontrib><creatorcontrib>Pavlinic, Dinko</creatorcontrib><creatorcontrib>Benes, Vladimir</creatorcontrib><creatorcontrib>Hufnagel, Lars</creatorcontrib><creatorcontrib>Neveu, Pierre A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sladitschek, Hanna L.</au><au>Fiuza, Ulla-Maj</au><au>Pavlinic, Dinko</au><au>Benes, Vladimir</au><au>Hufnagel, Lars</au><au>Neveu, Pierre A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>181</volume><issue>4</issue><spage>922</spage><epage>935.e21</epage><pages>922-935.e21</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell’s physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing. [Display omitted] •Integration of scRNA-seq and imaging data yield a canonical digital embryo•Cell type classification without prior knowledge•De novo reconstruction of the lineage history and spatial organization of the embryo•Timing differences contribute to inter-embryo variability in gene expression The complete gene expression history and physical position of every single cell at every cell division in an embryo up to gastrulation is reconstructed using a combination of single-cell transcriptomics and light sheet imaging.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32315617</pmid><doi>10.1016/j.cell.2020.03.055</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-05, Vol.181 (4), p.922-935.e21
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237864
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
ascidian
cell fate specification
Cell Lineage - genetics
cell type classification
Chordata - genetics
Computational Biology - methods
embryogenesis
Gastrulation - genetics
gene expression noise
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental - genetics
light sheet imaging
lineage reconstruction
Reproducibility of Results
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
single-cell RNA sequencing
spatial reconstruction
Transcriptome - genetics
Urochordata - genetics
title MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MorphoSeq:%20Full%20Single-Cell%20Transcriptome%20Dynamics%20Up%20to%20Gastrulation%20in%20a%20Chordate&rft.jtitle=Cell&rft.au=Sladitschek,%20Hanna%20L.&rft.date=2020-05-14&rft.volume=181&rft.issue=4&rft.spage=922&rft.epage=935.e21&rft.pages=922-935.e21&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.03.055&rft_dat=%3Cproquest_pubme%3E2393653435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393653435&rft_id=info:pmid/32315617&rft_els_id=S0092867420303482&rfr_iscdi=true