Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running
Muscle synergies provide a simple description of a complex motor control mechanism. Synergies are extracted from muscle activation patterns using factorisation methods. Despite the availability of several factorisation methods in the literature, the most appropriate method for muscle synergy extract...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-05, Vol.10 (1), p.8266-8266, Article 8266 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8266 |
---|---|
container_issue | 1 |
container_start_page | 8266 |
container_title | Scientific reports |
container_volume | 10 |
creator | Rabbi, Mohammad Fazle Pizzolato, Claudio Lloyd, David G. Carty, Chris P. Devaprakash, Daniel Diamond, Laura E. |
description | Muscle synergies provide a simple description of a complex motor control mechanism. Synergies are extracted from muscle activation patterns using factorisation methods. Despite the availability of several factorisation methods in the literature, the most appropriate method for muscle synergy extraction is currently unknown. In this study, we compared four muscle synergy extraction methods: non-negative matrix factorisation, principal component analysis, independent component analysis, and factor analysis. Probability distribution of muscle activation patterns were compared with the probability distribution of synergy excitation primitives obtained from the four factorisation methods. Muscle synergies extracted using non-negative matrix factorisation best matched the probability distribution of muscle activation patterns across different walking and running speeds. Non-negative matrix factorisation also best tracked changes in muscle activation patterns compared to the other factorisation methods. Our results suggest that non-negative matrix factorisation is the best factorisation method for identifying muscle synergies in dynamic tasks with different levels of muscle contraction. |
doi_str_mv | 10.1038/s41598-020-65257-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405307955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e83a559c95bed7bba7572b17040cc31aec8189ecfd9173ac447711ba941b75773</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS1ERau2f4AFssSGTaif43iDhCpeUgWbsrYc5ybjktiD7XRafj0epi2FRb2xde93j-_RQeglJW8p4e1ZFlTqtiGMNCvJpGq2z9ARI0I2jDP2_NH7EJ3mfEXqkUwLql-gQ84EU21Lj9CvrzE0AUZb_DXg2Zbkb_BgXYnJ51qMAfuMy7r2Yi7YbjYpbpK3pRagrGOPh5gw3JRUZ3Z0HPC8ZDcBzrcB0ughYx_w1k4_fBixDT1OSwj1fYIOBjtlOL27j9H3jx8uzz83F98-fTl_f9E4yVhpoOVWSu207KBXXWeVVKyjigjiHKcWXEtbDW7oNVXcOiGUorSz1WpXUcWP0bu97mbpZugdhLrsZKqL2aZbE603_3aCX5sxXhvFuFopXgXe3Amk-HOBXMzss4NpsgHikg0TRHKitJQVff0fehWXFKq9HSVWTGhNK8X2lEsx5wTDwzKUmF26Zp-uqemaP-mabR169djGw8h9lhXgeyDXVhgh_f37CdnfnhWzpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404624991</pqid></control><display><type>article</type><title>Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Rabbi, Mohammad Fazle ; Pizzolato, Claudio ; Lloyd, David G. ; Carty, Chris P. ; Devaprakash, Daniel ; Diamond, Laura E.</creator><creatorcontrib>Rabbi, Mohammad Fazle ; Pizzolato, Claudio ; Lloyd, David G. ; Carty, Chris P. ; Devaprakash, Daniel ; Diamond, Laura E.</creatorcontrib><description>Muscle synergies provide a simple description of a complex motor control mechanism. Synergies are extracted from muscle activation patterns using factorisation methods. Despite the availability of several factorisation methods in the literature, the most appropriate method for muscle synergy extraction is currently unknown. In this study, we compared four muscle synergy extraction methods: non-negative matrix factorisation, principal component analysis, independent component analysis, and factor analysis. Probability distribution of muscle activation patterns were compared with the probability distribution of synergy excitation primitives obtained from the four factorisation methods. Muscle synergies extracted using non-negative matrix factorisation best matched the probability distribution of muscle activation patterns across different walking and running speeds. Non-negative matrix factorisation also best tracked changes in muscle activation patterns compared to the other factorisation methods. Our results suggest that non-negative matrix factorisation is the best factorisation method for identifying muscle synergies in dynamic tasks with different levels of muscle contraction.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-65257-w</identifier><identifier>PMID: 32427881</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116 ; 639/166/985 ; Adult ; Factor analysis ; Factor Analysis, Statistical ; Humanities and Social Sciences ; Humans ; Male ; Methods ; Motor task performance ; multidisciplinary ; Muscle Contraction ; Muscle, Skeletal - physiology ; Principal components analysis ; Probability distribution ; Running ; Science ; Science (multidisciplinary) ; Walking ; Young Adult</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8266-8266, Article 8266</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e83a559c95bed7bba7572b17040cc31aec8189ecfd9173ac447711ba941b75773</citedby><cites>FETCH-LOGICAL-c522t-e83a559c95bed7bba7572b17040cc31aec8189ecfd9173ac447711ba941b75773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32427881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabbi, Mohammad Fazle</creatorcontrib><creatorcontrib>Pizzolato, Claudio</creatorcontrib><creatorcontrib>Lloyd, David G.</creatorcontrib><creatorcontrib>Carty, Chris P.</creatorcontrib><creatorcontrib>Devaprakash, Daniel</creatorcontrib><creatorcontrib>Diamond, Laura E.</creatorcontrib><title>Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Muscle synergies provide a simple description of a complex motor control mechanism. Synergies are extracted from muscle activation patterns using factorisation methods. Despite the availability of several factorisation methods in the literature, the most appropriate method for muscle synergy extraction is currently unknown. In this study, we compared four muscle synergy extraction methods: non-negative matrix factorisation, principal component analysis, independent component analysis, and factor analysis. Probability distribution of muscle activation patterns were compared with the probability distribution of synergy excitation primitives obtained from the four factorisation methods. Muscle synergies extracted using non-negative matrix factorisation best matched the probability distribution of muscle activation patterns across different walking and running speeds. Non-negative matrix factorisation also best tracked changes in muscle activation patterns compared to the other factorisation methods. Our results suggest that non-negative matrix factorisation is the best factorisation method for identifying muscle synergies in dynamic tasks with different levels of muscle contraction.</description><subject>631/378/116</subject><subject>639/166/985</subject><subject>Adult</subject><subject>Factor analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Methods</subject><subject>Motor task performance</subject><subject>multidisciplinary</subject><subject>Muscle Contraction</subject><subject>Muscle, Skeletal - physiology</subject><subject>Principal components analysis</subject><subject>Probability distribution</subject><subject>Running</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Walking</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAUhS1ERau2f4AFssSGTaif43iDhCpeUgWbsrYc5ybjktiD7XRafj0epi2FRb2xde93j-_RQeglJW8p4e1ZFlTqtiGMNCvJpGq2z9ARI0I2jDP2_NH7EJ3mfEXqkUwLql-gQ84EU21Lj9CvrzE0AUZb_DXg2Zbkb_BgXYnJ51qMAfuMy7r2Yi7YbjYpbpK3pRagrGOPh5gw3JRUZ3Z0HPC8ZDcBzrcB0ughYx_w1k4_fBixDT1OSwj1fYIOBjtlOL27j9H3jx8uzz83F98-fTl_f9E4yVhpoOVWSu207KBXXWeVVKyjigjiHKcWXEtbDW7oNVXcOiGUorSz1WpXUcWP0bu97mbpZugdhLrsZKqL2aZbE603_3aCX5sxXhvFuFopXgXe3Amk-HOBXMzss4NpsgHikg0TRHKitJQVff0fehWXFKq9HSVWTGhNK8X2lEsx5wTDwzKUmF26Zp-uqemaP-mabR169djGw8h9lhXgeyDXVhgh_f37CdnfnhWzpw</recordid><startdate>20200519</startdate><enddate>20200519</enddate><creator>Rabbi, Mohammad Fazle</creator><creator>Pizzolato, Claudio</creator><creator>Lloyd, David G.</creator><creator>Carty, Chris P.</creator><creator>Devaprakash, Daniel</creator><creator>Diamond, Laura E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200519</creationdate><title>Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running</title><author>Rabbi, Mohammad Fazle ; Pizzolato, Claudio ; Lloyd, David G. ; Carty, Chris P. ; Devaprakash, Daniel ; Diamond, Laura E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e83a559c95bed7bba7572b17040cc31aec8189ecfd9173ac447711ba941b75773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/116</topic><topic>639/166/985</topic><topic>Adult</topic><topic>Factor analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Methods</topic><topic>Motor task performance</topic><topic>multidisciplinary</topic><topic>Muscle Contraction</topic><topic>Muscle, Skeletal - physiology</topic><topic>Principal components analysis</topic><topic>Probability distribution</topic><topic>Running</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Walking</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabbi, Mohammad Fazle</creatorcontrib><creatorcontrib>Pizzolato, Claudio</creatorcontrib><creatorcontrib>Lloyd, David G.</creatorcontrib><creatorcontrib>Carty, Chris P.</creatorcontrib><creatorcontrib>Devaprakash, Daniel</creatorcontrib><creatorcontrib>Diamond, Laura E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabbi, Mohammad Fazle</au><au>Pizzolato, Claudio</au><au>Lloyd, David G.</au><au>Carty, Chris P.</au><au>Devaprakash, Daniel</au><au>Diamond, Laura E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-19</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8266</spage><epage>8266</epage><pages>8266-8266</pages><artnum>8266</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Muscle synergies provide a simple description of a complex motor control mechanism. Synergies are extracted from muscle activation patterns using factorisation methods. Despite the availability of several factorisation methods in the literature, the most appropriate method for muscle synergy extraction is currently unknown. In this study, we compared four muscle synergy extraction methods: non-negative matrix factorisation, principal component analysis, independent component analysis, and factor analysis. Probability distribution of muscle activation patterns were compared with the probability distribution of synergy excitation primitives obtained from the four factorisation methods. Muscle synergies extracted using non-negative matrix factorisation best matched the probability distribution of muscle activation patterns across different walking and running speeds. Non-negative matrix factorisation also best tracked changes in muscle activation patterns compared to the other factorisation methods. Our results suggest that non-negative matrix factorisation is the best factorisation method for identifying muscle synergies in dynamic tasks with different levels of muscle contraction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32427881</pmid><doi>10.1038/s41598-020-65257-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-05, Vol.10 (1), p.8266-8266, Article 8266 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237673 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/378/116 639/166/985 Adult Factor analysis Factor Analysis, Statistical Humanities and Social Sciences Humans Male Methods Motor task performance multidisciplinary Muscle Contraction Muscle, Skeletal - physiology Principal components analysis Probability distribution Running Science Science (multidisciplinary) Walking Young Adult |
title | Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-negative%20matrix%20factorisation%20is%20the%20most%20appropriate%20method%20for%20extraction%20of%20muscle%20synergies%20in%20walking%20and%20running&rft.jtitle=Scientific%20reports&rft.au=Rabbi,%20Mohammad%20Fazle&rft.date=2020-05-19&rft.volume=10&rft.issue=1&rft.spage=8266&rft.epage=8266&rft.pages=8266-8266&rft.artnum=8266&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-65257-w&rft_dat=%3Cproquest_pubme%3E2405307955%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404624991&rft_id=info:pmid/32427881&rfr_iscdi=true |