Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic anti-angiogenic therapy resistance

Glioblastoma responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance towards the primary goal of identifying regulators whose targeting could prolong the therapeutic window, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2020-02, Vol.80 (7), p.1498-1511
Hauptverfasser: Chandra, Ankush, Jahangiri, Arman, Chen, William, Nguyen, Alan T., Yagnik, Garima, Pereira, Matheus P., Jain, Saket, Garcia, Joseph H., Shah, Sumedh S., Wadhwa, Harsh, Joshi, Rushikesh S., Weiss, Jacob, Wolf, Kayla J., Lin, Jung-Ming G., Müller, Sören, Rick, Jonathan W., Diaz, Aaron A., Gilbert, Luke A., Kumar, Sanjay, Aghi, Manish K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1511
container_issue 7
container_start_page 1498
container_title Cancer research (Chicago, Ill.)
container_volume 80
creator Chandra, Ankush
Jahangiri, Arman
Chen, William
Nguyen, Alan T.
Yagnik, Garima
Pereira, Matheus P.
Jain, Saket
Garcia, Joseph H.
Shah, Sumedh S.
Wadhwa, Harsh
Joshi, Rushikesh S.
Weiss, Jacob
Wolf, Kayla J.
Lin, Jung-Ming G.
Müller, Sören
Rick, Jonathan W.
Diaz, Aaron A.
Gilbert, Luke A.
Kumar, Sanjay
Aghi, Manish K.
description Glioblastoma responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance towards the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neo-angiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient glioblastomas confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant vs. bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of anti-angiogenic therapy.
doi_str_mv 10.1158/0008-5472.CAN-19-1305
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7236890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_7236890</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_72368903</originalsourceid><addsrcrecordid>eNqljUFLxDAUhIMobl39CUL-QNakaWz3ImhZ8eTJ017C2-6zzZK-lCQu9N_bgwiePQ3fzDDD2L2SG6VM8yClbISp6nLTPr8LtRVKS3PBCmV0I-qqMpes-O2s2E1KpwWNkuaarXQpK9XoumCn1gcCz_e7FyWO0Z2R-IgJqRvmcfFzBEouu0B8imEMGRPPEHvMcPDIA3XBh951HCg7AdS70CMtnAeMMM08YnIpA3V4y64-wSe8-9E1e3rdfbRvYvo6jHjskJYzb6foRoizDeDs34TcYPtwtnWpH5ut1P8e-AZRb2n5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic anti-angiogenic therapy resistance</title><source>American Association for Cancer Research Journals</source><source>EZB Electronic Journals Library</source><creator>Chandra, Ankush ; Jahangiri, Arman ; Chen, William ; Nguyen, Alan T. ; Yagnik, Garima ; Pereira, Matheus P. ; Jain, Saket ; Garcia, Joseph H. ; Shah, Sumedh S. ; Wadhwa, Harsh ; Joshi, Rushikesh S. ; Weiss, Jacob ; Wolf, Kayla J. ; Lin, Jung-Ming G. ; Müller, Sören ; Rick, Jonathan W. ; Diaz, Aaron A. ; Gilbert, Luke A. ; Kumar, Sanjay ; Aghi, Manish K.</creator><creatorcontrib>Chandra, Ankush ; Jahangiri, Arman ; Chen, William ; Nguyen, Alan T. ; Yagnik, Garima ; Pereira, Matheus P. ; Jain, Saket ; Garcia, Joseph H. ; Shah, Sumedh S. ; Wadhwa, Harsh ; Joshi, Rushikesh S. ; Weiss, Jacob ; Wolf, Kayla J. ; Lin, Jung-Ming G. ; Müller, Sören ; Rick, Jonathan W. ; Diaz, Aaron A. ; Gilbert, Luke A. ; Kumar, Sanjay ; Aghi, Manish K.</creatorcontrib><description>Glioblastoma responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance towards the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neo-angiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient glioblastomas confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant vs. bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of anti-angiogenic therapy.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-19-1305</identifier><identifier>PMID: 32041837</identifier><language>eng</language><ispartof>Cancer research (Chicago, Ill.), 2020-02, Vol.80 (7), p.1498-1511</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Chandra, Ankush</creatorcontrib><creatorcontrib>Jahangiri, Arman</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Nguyen, Alan T.</creatorcontrib><creatorcontrib>Yagnik, Garima</creatorcontrib><creatorcontrib>Pereira, Matheus P.</creatorcontrib><creatorcontrib>Jain, Saket</creatorcontrib><creatorcontrib>Garcia, Joseph H.</creatorcontrib><creatorcontrib>Shah, Sumedh S.</creatorcontrib><creatorcontrib>Wadhwa, Harsh</creatorcontrib><creatorcontrib>Joshi, Rushikesh S.</creatorcontrib><creatorcontrib>Weiss, Jacob</creatorcontrib><creatorcontrib>Wolf, Kayla J.</creatorcontrib><creatorcontrib>Lin, Jung-Ming G.</creatorcontrib><creatorcontrib>Müller, Sören</creatorcontrib><creatorcontrib>Rick, Jonathan W.</creatorcontrib><creatorcontrib>Diaz, Aaron A.</creatorcontrib><creatorcontrib>Gilbert, Luke A.</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Aghi, Manish K.</creatorcontrib><title>Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic anti-angiogenic therapy resistance</title><title>Cancer research (Chicago, Ill.)</title><description>Glioblastoma responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance towards the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neo-angiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient glioblastomas confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant vs. bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of anti-angiogenic therapy.</description><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqljUFLxDAUhIMobl39CUL-QNakaWz3ImhZ8eTJ017C2-6zzZK-lCQu9N_bgwiePQ3fzDDD2L2SG6VM8yClbISp6nLTPr8LtRVKS3PBCmV0I-qqMpes-O2s2E1KpwWNkuaarXQpK9XoumCn1gcCz_e7FyWO0Z2R-IgJqRvmcfFzBEouu0B8imEMGRPPEHvMcPDIA3XBh951HCg7AdS70CMtnAeMMM08YnIpA3V4y64-wSe8-9E1e3rdfbRvYvo6jHjskJYzb6foRoizDeDs34TcYPtwtnWpH5ut1P8e-AZRb2n5</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Chandra, Ankush</creator><creator>Jahangiri, Arman</creator><creator>Chen, William</creator><creator>Nguyen, Alan T.</creator><creator>Yagnik, Garima</creator><creator>Pereira, Matheus P.</creator><creator>Jain, Saket</creator><creator>Garcia, Joseph H.</creator><creator>Shah, Sumedh S.</creator><creator>Wadhwa, Harsh</creator><creator>Joshi, Rushikesh S.</creator><creator>Weiss, Jacob</creator><creator>Wolf, Kayla J.</creator><creator>Lin, Jung-Ming G.</creator><creator>Müller, Sören</creator><creator>Rick, Jonathan W.</creator><creator>Diaz, Aaron A.</creator><creator>Gilbert, Luke A.</creator><creator>Kumar, Sanjay</creator><creator>Aghi, Manish K.</creator><scope>5PM</scope></search><sort><creationdate>20200210</creationdate><title>Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic anti-angiogenic therapy resistance</title><author>Chandra, Ankush ; Jahangiri, Arman ; Chen, William ; Nguyen, Alan T. ; Yagnik, Garima ; Pereira, Matheus P. ; Jain, Saket ; Garcia, Joseph H. ; Shah, Sumedh S. ; Wadhwa, Harsh ; Joshi, Rushikesh S. ; Weiss, Jacob ; Wolf, Kayla J. ; Lin, Jung-Ming G. ; Müller, Sören ; Rick, Jonathan W. ; Diaz, Aaron A. ; Gilbert, Luke A. ; Kumar, Sanjay ; Aghi, Manish K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_72368903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandra, Ankush</creatorcontrib><creatorcontrib>Jahangiri, Arman</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Nguyen, Alan T.</creatorcontrib><creatorcontrib>Yagnik, Garima</creatorcontrib><creatorcontrib>Pereira, Matheus P.</creatorcontrib><creatorcontrib>Jain, Saket</creatorcontrib><creatorcontrib>Garcia, Joseph H.</creatorcontrib><creatorcontrib>Shah, Sumedh S.</creatorcontrib><creatorcontrib>Wadhwa, Harsh</creatorcontrib><creatorcontrib>Joshi, Rushikesh S.</creatorcontrib><creatorcontrib>Weiss, Jacob</creatorcontrib><creatorcontrib>Wolf, Kayla J.</creatorcontrib><creatorcontrib>Lin, Jung-Ming G.</creatorcontrib><creatorcontrib>Müller, Sören</creatorcontrib><creatorcontrib>Rick, Jonathan W.</creatorcontrib><creatorcontrib>Diaz, Aaron A.</creatorcontrib><creatorcontrib>Gilbert, Luke A.</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Aghi, Manish K.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandra, Ankush</au><au>Jahangiri, Arman</au><au>Chen, William</au><au>Nguyen, Alan T.</au><au>Yagnik, Garima</au><au>Pereira, Matheus P.</au><au>Jain, Saket</au><au>Garcia, Joseph H.</au><au>Shah, Sumedh S.</au><au>Wadhwa, Harsh</au><au>Joshi, Rushikesh S.</au><au>Weiss, Jacob</au><au>Wolf, Kayla J.</au><au>Lin, Jung-Ming G.</au><au>Müller, Sören</au><au>Rick, Jonathan W.</au><au>Diaz, Aaron A.</au><au>Gilbert, Luke A.</au><au>Kumar, Sanjay</au><au>Aghi, Manish K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic anti-angiogenic therapy resistance</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><date>2020-02-10</date><risdate>2020</risdate><volume>80</volume><issue>7</issue><spage>1498</spage><epage>1511</epage><pages>1498-1511</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Glioblastoma responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance towards the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neo-angiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient glioblastomas confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant vs. bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of anti-angiogenic therapy.</abstract><pmid>32041837</pmid><doi>10.1158/0008-5472.CAN-19-1305</doi></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2020-02, Vol.80 (7), p.1498-1511
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7236890
source American Association for Cancer Research Journals; EZB Electronic Journals Library
title Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic anti-angiogenic therapy resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clonal%20ZEB1-driven%20mesenchymal%20transition%20promotes%20targetable%20oncologic%20anti-angiogenic%20therapy%20resistance&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Chandra,%20Ankush&rft.date=2020-02-10&rft.volume=80&rft.issue=7&rft.spage=1498&rft.epage=1511&rft.pages=1498-1511&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-19-1305&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_7236890%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32041837&rfr_iscdi=true