Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation

Coproheme decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme b via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-05, Vol.10 (10), p.5405-5418
Hauptverfasser: Michlits, Hanna, Lier, Bettina, Pfanzagl, Vera, Djinović-Carugo, Kristina, Furtmüller, Paul G, Oostenbrink, Chris, Obinger, Christian, Hofbauer, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5418
container_issue 10
container_start_page 5405
container_title ACS catalysis
container_volume 10
creator Michlits, Hanna
Lier, Bettina
Pfanzagl, Vera
Djinović-Carugo, Kristina
Furtmüller, Paul G
Oostenbrink, Chris
Obinger, Christian
Hofbauer, Stefan
description Coproheme decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme b via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme depend on hydrogen peroxide and the presence of a catalytic tyrosine. Here we demonstrate that ChdCs from Actinobacteria are unique in using a histidine (H118 in ChdC from Corynebacterium diphtheriae, CdChdC) as a distal base in addition to the redox-active tyrosine (Y135). We present the X-ray crystal structures of coproheme-CdChdC and MMD-CdChdC, which clearly show (i) differences in the active site architecture between Firmicutes and Actinobacteria and (ii) rotation of the redox-active reaction intermediate (MMD) after formation of the vinyl group at position 2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen peroxide (k app = (4.90 ± 1.25) × 104 M–1 s–1). The resulting Compound I is rapidly converted to a catalytically active Compound I* (oxoiron­(IV) Y135•) that initiates the radical decarboxylation reactions. As a consequence of the more efficient Compound I formation, actinobacterial ChdCs exhibit a higher catalytic efficiency in comparison to representatives from Firmicutes. On the basis of the kinetic data of wild-type CdChdC and the variants H118A, Y135A, and H118A/Y135A together with high-resolution crystal structures and molecular dynamics simulations, we present a molecular mechanism for the hydrogen peroxide dependent conversion of coproheme via MMD to heme b and discuss differences between ChdCs from Actinobacteria and Firmicutes.
doi_str_mv 10.1021/acscatal.0c00411
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406306194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-cf0e32656239bdc3433d0d7589afd2877422033ebe0026af8b1eadd929d492c83</originalsourceid><addsrcrecordid>eNp1kb1PHDEQxa0oUUBAnypymSIH44_9aiKRIwQkpFBAbc3as2C0u77Y3ij893F0B4ICN7Zn3vt55MfYJwHHAqQ4QZssZhyPwQJoId6xfSmqalVpVb1_cd5jRyk9QFm6qtsGPrI9JbUGVdf77O7UZj-HHm2m6HHk67CJ4Z4m4mdkMfbh7-OIiRK_TcQvfMre-Zk4Jo78rFyL5Xvp8xz4dQxTyFQQ0yYss-OX_DzECbMP8yH7MOCY6Gi3H7Db8x8364vV1a-fl-vTqxVqpfLKDkBK1lUtVdc7q0rRgWuqtsPBybZptJSgFPUEIGsc2l4QOtfJzulO2lYdsG9b7mbpJ3KW5hxxNJvoJ4yPJqA3rzuzvzd34Y9ppKq6timALztADL8XStlMPlkaR5wpLMlIDbWCWnS6SGErtTGkFGl4fkaA-R-ReYrI7CIqls8vx3s2PAVSBF-3gmI1D2GJc_mtt3n_AGKJnpc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406306194</pqid></control><display><type>article</type><title>Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation</title><source>American Chemical Society Journals</source><creator>Michlits, Hanna ; Lier, Bettina ; Pfanzagl, Vera ; Djinović-Carugo, Kristina ; Furtmüller, Paul G ; Oostenbrink, Chris ; Obinger, Christian ; Hofbauer, Stefan</creator><creatorcontrib>Michlits, Hanna ; Lier, Bettina ; Pfanzagl, Vera ; Djinović-Carugo, Kristina ; Furtmüller, Paul G ; Oostenbrink, Chris ; Obinger, Christian ; Hofbauer, Stefan</creatorcontrib><description>Coproheme decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme b via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme depend on hydrogen peroxide and the presence of a catalytic tyrosine. Here we demonstrate that ChdCs from Actinobacteria are unique in using a histidine (H118 in ChdC from Corynebacterium diphtheriae, CdChdC) as a distal base in addition to the redox-active tyrosine (Y135). We present the X-ray crystal structures of coproheme-CdChdC and MMD-CdChdC, which clearly show (i) differences in the active site architecture between Firmicutes and Actinobacteria and (ii) rotation of the redox-active reaction intermediate (MMD) after formation of the vinyl group at position 2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen peroxide (k app = (4.90 ± 1.25) × 104 M–1 s–1). The resulting Compound I is rapidly converted to a catalytically active Compound I* (oxoiron­(IV) Y135•) that initiates the radical decarboxylation reactions. As a consequence of the more efficient Compound I formation, actinobacterial ChdCs exhibit a higher catalytic efficiency in comparison to representatives from Firmicutes. On the basis of the kinetic data of wild-type CdChdC and the variants H118A, Y135A, and H118A/Y135A together with high-resolution crystal structures and molecular dynamics simulations, we present a molecular mechanism for the hydrogen peroxide dependent conversion of coproheme via MMD to heme b and discuss differences between ChdCs from Actinobacteria and Firmicutes.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c00411</identifier><identifier>PMID: 32440366</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS catalysis, 2020-05, Vol.10 (10), p.5405-5418</ispartof><rights>Copyright © 2020 American Chemical Society.</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-cf0e32656239bdc3433d0d7589afd2877422033ebe0026af8b1eadd929d492c83</citedby><cites>FETCH-LOGICAL-a433t-cf0e32656239bdc3433d0d7589afd2877422033ebe0026af8b1eadd929d492c83</cites><orcidid>0000-0003-3375-7715 ; 0000-0003-0252-2972 ; 0000-0002-7133-3430 ; 0000-0002-4232-2556 ; 0000-0002-1199-2469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c00411$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c00411$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32440366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michlits, Hanna</creatorcontrib><creatorcontrib>Lier, Bettina</creatorcontrib><creatorcontrib>Pfanzagl, Vera</creatorcontrib><creatorcontrib>Djinović-Carugo, Kristina</creatorcontrib><creatorcontrib>Furtmüller, Paul G</creatorcontrib><creatorcontrib>Oostenbrink, Chris</creatorcontrib><creatorcontrib>Obinger, Christian</creatorcontrib><creatorcontrib>Hofbauer, Stefan</creatorcontrib><title>Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Coproheme decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme b via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme depend on hydrogen peroxide and the presence of a catalytic tyrosine. Here we demonstrate that ChdCs from Actinobacteria are unique in using a histidine (H118 in ChdC from Corynebacterium diphtheriae, CdChdC) as a distal base in addition to the redox-active tyrosine (Y135). We present the X-ray crystal structures of coproheme-CdChdC and MMD-CdChdC, which clearly show (i) differences in the active site architecture between Firmicutes and Actinobacteria and (ii) rotation of the redox-active reaction intermediate (MMD) after formation of the vinyl group at position 2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen peroxide (k app = (4.90 ± 1.25) × 104 M–1 s–1). The resulting Compound I is rapidly converted to a catalytically active Compound I* (oxoiron­(IV) Y135•) that initiates the radical decarboxylation reactions. As a consequence of the more efficient Compound I formation, actinobacterial ChdCs exhibit a higher catalytic efficiency in comparison to representatives from Firmicutes. On the basis of the kinetic data of wild-type CdChdC and the variants H118A, Y135A, and H118A/Y135A together with high-resolution crystal structures and molecular dynamics simulations, we present a molecular mechanism for the hydrogen peroxide dependent conversion of coproheme via MMD to heme b and discuss differences between ChdCs from Actinobacteria and Firmicutes.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kb1PHDEQxa0oUUBAnypymSIH44_9aiKRIwQkpFBAbc3as2C0u77Y3ij893F0B4ICN7Zn3vt55MfYJwHHAqQ4QZssZhyPwQJoId6xfSmqalVpVb1_cd5jRyk9QFm6qtsGPrI9JbUGVdf77O7UZj-HHm2m6HHk67CJ4Z4m4mdkMfbh7-OIiRK_TcQvfMre-Zk4Jo78rFyL5Xvp8xz4dQxTyFQQ0yYss-OX_DzECbMP8yH7MOCY6Gi3H7Db8x8364vV1a-fl-vTqxVqpfLKDkBK1lUtVdc7q0rRgWuqtsPBybZptJSgFPUEIGsc2l4QOtfJzulO2lYdsG9b7mbpJ3KW5hxxNJvoJ4yPJqA3rzuzvzd34Y9ppKq6timALztADL8XStlMPlkaR5wpLMlIDbWCWnS6SGErtTGkFGl4fkaA-R-ReYrI7CIqls8vx3s2PAVSBF-3gmI1D2GJc_mtt3n_AGKJnpc</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Michlits, Hanna</creator><creator>Lier, Bettina</creator><creator>Pfanzagl, Vera</creator><creator>Djinović-Carugo, Kristina</creator><creator>Furtmüller, Paul G</creator><creator>Oostenbrink, Chris</creator><creator>Obinger, Christian</creator><creator>Hofbauer, Stefan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3375-7715</orcidid><orcidid>https://orcid.org/0000-0003-0252-2972</orcidid><orcidid>https://orcid.org/0000-0002-7133-3430</orcidid><orcidid>https://orcid.org/0000-0002-4232-2556</orcidid><orcidid>https://orcid.org/0000-0002-1199-2469</orcidid></search><sort><creationdate>20200515</creationdate><title>Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation</title><author>Michlits, Hanna ; Lier, Bettina ; Pfanzagl, Vera ; Djinović-Carugo, Kristina ; Furtmüller, Paul G ; Oostenbrink, Chris ; Obinger, Christian ; Hofbauer, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-cf0e32656239bdc3433d0d7589afd2877422033ebe0026af8b1eadd929d492c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michlits, Hanna</creatorcontrib><creatorcontrib>Lier, Bettina</creatorcontrib><creatorcontrib>Pfanzagl, Vera</creatorcontrib><creatorcontrib>Djinović-Carugo, Kristina</creatorcontrib><creatorcontrib>Furtmüller, Paul G</creatorcontrib><creatorcontrib>Oostenbrink, Chris</creatorcontrib><creatorcontrib>Obinger, Christian</creatorcontrib><creatorcontrib>Hofbauer, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michlits, Hanna</au><au>Lier, Bettina</au><au>Pfanzagl, Vera</au><au>Djinović-Carugo, Kristina</au><au>Furtmüller, Paul G</au><au>Oostenbrink, Chris</au><au>Obinger, Christian</au><au>Hofbauer, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>5405</spage><epage>5418</epage><pages>5405-5418</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Coproheme decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme b via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme depend on hydrogen peroxide and the presence of a catalytic tyrosine. Here we demonstrate that ChdCs from Actinobacteria are unique in using a histidine (H118 in ChdC from Corynebacterium diphtheriae, CdChdC) as a distal base in addition to the redox-active tyrosine (Y135). We present the X-ray crystal structures of coproheme-CdChdC and MMD-CdChdC, which clearly show (i) differences in the active site architecture between Firmicutes and Actinobacteria and (ii) rotation of the redox-active reaction intermediate (MMD) after formation of the vinyl group at position 2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen peroxide (k app = (4.90 ± 1.25) × 104 M–1 s–1). The resulting Compound I is rapidly converted to a catalytically active Compound I* (oxoiron­(IV) Y135•) that initiates the radical decarboxylation reactions. As a consequence of the more efficient Compound I formation, actinobacterial ChdCs exhibit a higher catalytic efficiency in comparison to representatives from Firmicutes. On the basis of the kinetic data of wild-type CdChdC and the variants H118A, Y135A, and H118A/Y135A together with high-resolution crystal structures and molecular dynamics simulations, we present a molecular mechanism for the hydrogen peroxide dependent conversion of coproheme via MMD to heme b and discuss differences between ChdCs from Actinobacteria and Firmicutes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32440366</pmid><doi>10.1021/acscatal.0c00411</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3375-7715</orcidid><orcidid>https://orcid.org/0000-0003-0252-2972</orcidid><orcidid>https://orcid.org/0000-0002-7133-3430</orcidid><orcidid>https://orcid.org/0000-0002-4232-2556</orcidid><orcidid>https://orcid.org/0000-0002-1199-2469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-05, Vol.10 (10), p.5405-5418
issn 2155-5435
2155-5435
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235987
source American Chemical Society Journals
title Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actinobacterial%20Coproheme%20Decarboxylases%20Use%20Histidine%20as%20a%20Distal%20Base%20to%20Promote%20Compound%20I%20Formation&rft.jtitle=ACS%20catalysis&rft.au=Michlits,%20Hanna&rft.date=2020-05-15&rft.volume=10&rft.issue=10&rft.spage=5405&rft.epage=5418&rft.pages=5405-5418&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c00411&rft_dat=%3Cproquest_pubme%3E2406306194%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406306194&rft_id=info:pmid/32440366&rfr_iscdi=true