Regularized selection indices for breeding value prediction using hyper-spectral image data
High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-05, Vol.10 (1), p.8195-8195, Article 8195 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8195 |
---|---|
container_issue | 1 |
container_start_page | 8195 |
container_title | Scientific reports |
container_volume | 10 |
creator | Lopez-Cruz, Marco Olson, Eric Rovere, Gabriel Crossa, Jose Dreisigacker, Susanne Mondal, Suchismita Singh, Ravi Campos, Gustavo de los |
description | High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles. |
doi_str_mv | 10.1038/s41598-020-65011-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404640930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoKuof8CAFL16q6STpbi6CiF8gCKInDyFNJjXSbWuyXdBfb9b6fTA5ZJJ55s0MLyG7BT0sKJseRV4IOc0p0LwUtChyWCGbQLnIgQGs_og3yE6MTzQtAZIXcp1sMOBpA98kD7dYD40O_hVtFrFBM_ddm_nWeoMxc13IqoBofVtnC90MmPUh3UZqiMvnx5ceQx77VBp0k_mZrjGzeq63yZrTTcSdj3OL3J-f3Z1e5tc3F1enJ9e54XwCOZ866WjhuHCaQgVW8IpKrmGCFXPU0ImFUkomrbbaABOCVWj1lEkupTWObZHjUbcfqhlag-2yEdWH1Ep4UZ326nem9Y-q7hZqksSgZEng4EMgdM8Dxrma-WiwaXSL3RAVcMpLTiWjCd3_gz51Q2jTeO8U4yBYmSgYKRO6GAO6r2YKqpb2qdE-lexT7_YpSEV7P8f4Kvk0KwFsBGJKtTWG77__kX0D1Qimwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404342536</pqid></control><display><type>article</type><title>Regularized selection indices for breeding value prediction using hyper-spectral image data</title><source>Springer Open Access</source><source>Nature (Open Access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Directory of Open Access Journals (Open Access)</source><creator>Lopez-Cruz, Marco ; Olson, Eric ; Rovere, Gabriel ; Crossa, Jose ; Dreisigacker, Susanne ; Mondal, Suchismita ; Singh, Ravi ; Campos, Gustavo de los</creator><creatorcontrib>Lopez-Cruz, Marco ; Olson, Eric ; Rovere, Gabriel ; Crossa, Jose ; Dreisigacker, Susanne ; Mondal, Suchismita ; Singh, Ravi ; Campos, Gustavo de los</creatorcontrib><description>High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-65011-2</identifier><identifier>PMID: 32424224</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2415 ; 631/208/480 ; Agriculture ; Computer applications ; Drought resistance ; Gene expression ; Genetic analysis ; Genomes ; Humanities and Social Sciences ; Molecular Imaging ; multidisciplinary ; Phenotype ; Phenotypes ; Phenotyping ; Plant Breeding ; Science ; Science (multidisciplinary) ; Wheat</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8195-8195, Article 8195</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</citedby><cites>FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</cites><orcidid>0000-0001-9429-5855 ; 0000-0002-4676-5071 ; 0000-0002-3546-5989 ; 0000-0002-8582-8899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235263/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235263/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32424224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Cruz, Marco</creatorcontrib><creatorcontrib>Olson, Eric</creatorcontrib><creatorcontrib>Rovere, Gabriel</creatorcontrib><creatorcontrib>Crossa, Jose</creatorcontrib><creatorcontrib>Dreisigacker, Susanne</creatorcontrib><creatorcontrib>Mondal, Suchismita</creatorcontrib><creatorcontrib>Singh, Ravi</creatorcontrib><creatorcontrib>Campos, Gustavo de los</creatorcontrib><title>Regularized selection indices for breeding value prediction using hyper-spectral image data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.</description><subject>631/114/2415</subject><subject>631/208/480</subject><subject>Agriculture</subject><subject>Computer applications</subject><subject>Drought resistance</subject><subject>Gene expression</subject><subject>Genetic analysis</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Molecular Imaging</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Plant Breeding</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Wheat</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMoKuof8CAFL16q6STpbi6CiF8gCKInDyFNJjXSbWuyXdBfb9b6fTA5ZJJ55s0MLyG7BT0sKJseRV4IOc0p0LwUtChyWCGbQLnIgQGs_og3yE6MTzQtAZIXcp1sMOBpA98kD7dYD40O_hVtFrFBM_ddm_nWeoMxc13IqoBofVtnC90MmPUh3UZqiMvnx5ceQx77VBp0k_mZrjGzeq63yZrTTcSdj3OL3J-f3Z1e5tc3F1enJ9e54XwCOZ866WjhuHCaQgVW8IpKrmGCFXPU0ImFUkomrbbaABOCVWj1lEkupTWObZHjUbcfqhlag-2yEdWH1Ep4UZ326nem9Y-q7hZqksSgZEng4EMgdM8Dxrma-WiwaXSL3RAVcMpLTiWjCd3_gz51Q2jTeO8U4yBYmSgYKRO6GAO6r2YKqpb2qdE-lexT7_YpSEV7P8f4Kvk0KwFsBGJKtTWG77__kX0D1Qimwg</recordid><startdate>20200518</startdate><enddate>20200518</enddate><creator>Lopez-Cruz, Marco</creator><creator>Olson, Eric</creator><creator>Rovere, Gabriel</creator><creator>Crossa, Jose</creator><creator>Dreisigacker, Susanne</creator><creator>Mondal, Suchismita</creator><creator>Singh, Ravi</creator><creator>Campos, Gustavo de los</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-4676-5071</orcidid><orcidid>https://orcid.org/0000-0002-3546-5989</orcidid><orcidid>https://orcid.org/0000-0002-8582-8899</orcidid></search><sort><creationdate>20200518</creationdate><title>Regularized selection indices for breeding value prediction using hyper-spectral image data</title><author>Lopez-Cruz, Marco ; Olson, Eric ; Rovere, Gabriel ; Crossa, Jose ; Dreisigacker, Susanne ; Mondal, Suchismita ; Singh, Ravi ; Campos, Gustavo de los</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2415</topic><topic>631/208/480</topic><topic>Agriculture</topic><topic>Computer applications</topic><topic>Drought resistance</topic><topic>Gene expression</topic><topic>Genetic analysis</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Molecular Imaging</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Plant Breeding</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Cruz, Marco</creatorcontrib><creatorcontrib>Olson, Eric</creatorcontrib><creatorcontrib>Rovere, Gabriel</creatorcontrib><creatorcontrib>Crossa, Jose</creatorcontrib><creatorcontrib>Dreisigacker, Susanne</creatorcontrib><creatorcontrib>Mondal, Suchismita</creatorcontrib><creatorcontrib>Singh, Ravi</creatorcontrib><creatorcontrib>Campos, Gustavo de los</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Cruz, Marco</au><au>Olson, Eric</au><au>Rovere, Gabriel</au><au>Crossa, Jose</au><au>Dreisigacker, Susanne</au><au>Mondal, Suchismita</au><au>Singh, Ravi</au><au>Campos, Gustavo de los</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized selection indices for breeding value prediction using hyper-spectral image data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-18</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8195</spage><epage>8195</epage><pages>8195-8195</pages><artnum>8195</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32424224</pmid><doi>10.1038/s41598-020-65011-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-4676-5071</orcidid><orcidid>https://orcid.org/0000-0002-3546-5989</orcidid><orcidid>https://orcid.org/0000-0002-8582-8899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-05, Vol.10 (1), p.8195-8195, Article 8195 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235263 |
source | Springer Open Access; Nature (Open Access); MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library; Directory of Open Access Journals (Open Access) |
subjects | 631/114/2415 631/208/480 Agriculture Computer applications Drought resistance Gene expression Genetic analysis Genomes Humanities and Social Sciences Molecular Imaging multidisciplinary Phenotype Phenotypes Phenotyping Plant Breeding Science Science (multidisciplinary) Wheat |
title | Regularized selection indices for breeding value prediction using hyper-spectral image data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20selection%20indices%20for%20breeding%20value%20prediction%20using%20hyper-spectral%20image%20data&rft.jtitle=Scientific%20reports&rft.au=Lopez-Cruz,%20Marco&rft.date=2020-05-18&rft.volume=10&rft.issue=1&rft.spage=8195&rft.epage=8195&rft.pages=8195-8195&rft.artnum=8195&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-65011-2&rft_dat=%3Cproquest_pubme%3E2404640930%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404342536&rft_id=info:pmid/32424224&rfr_iscdi=true |