Regularized selection indices for breeding value prediction using hyper-spectral image data

High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-05, Vol.10 (1), p.8195-8195, Article 8195
Hauptverfasser: Lopez-Cruz, Marco, Olson, Eric, Rovere, Gabriel, Crossa, Jose, Dreisigacker, Susanne, Mondal, Suchismita, Singh, Ravi, Campos, Gustavo de los
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8195
container_issue 1
container_start_page 8195
container_title Scientific reports
container_volume 10
creator Lopez-Cruz, Marco
Olson, Eric
Rovere, Gabriel
Crossa, Jose
Dreisigacker, Susanne
Mondal, Suchismita
Singh, Ravi
Campos, Gustavo de los
description High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.
doi_str_mv 10.1038/s41598-020-65011-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404640930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoKuof8CAFL16q6STpbi6CiF8gCKInDyFNJjXSbWuyXdBfb9b6fTA5ZJJ55s0MLyG7BT0sKJseRV4IOc0p0LwUtChyWCGbQLnIgQGs_og3yE6MTzQtAZIXcp1sMOBpA98kD7dYD40O_hVtFrFBM_ddm_nWeoMxc13IqoBofVtnC90MmPUh3UZqiMvnx5ceQx77VBp0k_mZrjGzeq63yZrTTcSdj3OL3J-f3Z1e5tc3F1enJ9e54XwCOZ866WjhuHCaQgVW8IpKrmGCFXPU0ImFUkomrbbaABOCVWj1lEkupTWObZHjUbcfqhlag-2yEdWH1Ep4UZ326nem9Y-q7hZqksSgZEng4EMgdM8Dxrma-WiwaXSL3RAVcMpLTiWjCd3_gz51Q2jTeO8U4yBYmSgYKRO6GAO6r2YKqpb2qdE-lexT7_YpSEV7P8f4Kvk0KwFsBGJKtTWG77__kX0D1Qimwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404342536</pqid></control><display><type>article</type><title>Regularized selection indices for breeding value prediction using hyper-spectral image data</title><source>Springer Open Access</source><source>Nature (Open Access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Directory of Open Access Journals (Open Access)</source><creator>Lopez-Cruz, Marco ; Olson, Eric ; Rovere, Gabriel ; Crossa, Jose ; Dreisigacker, Susanne ; Mondal, Suchismita ; Singh, Ravi ; Campos, Gustavo de los</creator><creatorcontrib>Lopez-Cruz, Marco ; Olson, Eric ; Rovere, Gabriel ; Crossa, Jose ; Dreisigacker, Susanne ; Mondal, Suchismita ; Singh, Ravi ; Campos, Gustavo de los</creatorcontrib><description>High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-65011-2</identifier><identifier>PMID: 32424224</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2415 ; 631/208/480 ; Agriculture ; Computer applications ; Drought resistance ; Gene expression ; Genetic analysis ; Genomes ; Humanities and Social Sciences ; Molecular Imaging ; multidisciplinary ; Phenotype ; Phenotypes ; Phenotyping ; Plant Breeding ; Science ; Science (multidisciplinary) ; Wheat</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8195-8195, Article 8195</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</citedby><cites>FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</cites><orcidid>0000-0001-9429-5855 ; 0000-0002-4676-5071 ; 0000-0002-3546-5989 ; 0000-0002-8582-8899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235263/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235263/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32424224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Cruz, Marco</creatorcontrib><creatorcontrib>Olson, Eric</creatorcontrib><creatorcontrib>Rovere, Gabriel</creatorcontrib><creatorcontrib>Crossa, Jose</creatorcontrib><creatorcontrib>Dreisigacker, Susanne</creatorcontrib><creatorcontrib>Mondal, Suchismita</creatorcontrib><creatorcontrib>Singh, Ravi</creatorcontrib><creatorcontrib>Campos, Gustavo de los</creatorcontrib><title>Regularized selection indices for breeding value prediction using hyper-spectral image data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.</description><subject>631/114/2415</subject><subject>631/208/480</subject><subject>Agriculture</subject><subject>Computer applications</subject><subject>Drought resistance</subject><subject>Gene expression</subject><subject>Genetic analysis</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Molecular Imaging</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Plant Breeding</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Wheat</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMoKuof8CAFL16q6STpbi6CiF8gCKInDyFNJjXSbWuyXdBfb9b6fTA5ZJJ55s0MLyG7BT0sKJseRV4IOc0p0LwUtChyWCGbQLnIgQGs_og3yE6MTzQtAZIXcp1sMOBpA98kD7dYD40O_hVtFrFBM_ddm_nWeoMxc13IqoBofVtnC90MmPUh3UZqiMvnx5ceQx77VBp0k_mZrjGzeq63yZrTTcSdj3OL3J-f3Z1e5tc3F1enJ9e54XwCOZ866WjhuHCaQgVW8IpKrmGCFXPU0ImFUkomrbbaABOCVWj1lEkupTWObZHjUbcfqhlag-2yEdWH1Ep4UZ326nem9Y-q7hZqksSgZEng4EMgdM8Dxrma-WiwaXSL3RAVcMpLTiWjCd3_gz51Q2jTeO8U4yBYmSgYKRO6GAO6r2YKqpb2qdE-lexT7_YpSEV7P8f4Kvk0KwFsBGJKtTWG77__kX0D1Qimwg</recordid><startdate>20200518</startdate><enddate>20200518</enddate><creator>Lopez-Cruz, Marco</creator><creator>Olson, Eric</creator><creator>Rovere, Gabriel</creator><creator>Crossa, Jose</creator><creator>Dreisigacker, Susanne</creator><creator>Mondal, Suchismita</creator><creator>Singh, Ravi</creator><creator>Campos, Gustavo de los</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-4676-5071</orcidid><orcidid>https://orcid.org/0000-0002-3546-5989</orcidid><orcidid>https://orcid.org/0000-0002-8582-8899</orcidid></search><sort><creationdate>20200518</creationdate><title>Regularized selection indices for breeding value prediction using hyper-spectral image data</title><author>Lopez-Cruz, Marco ; Olson, Eric ; Rovere, Gabriel ; Crossa, Jose ; Dreisigacker, Susanne ; Mondal, Suchismita ; Singh, Ravi ; Campos, Gustavo de los</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4472-48f9f01f45fa02b2d54b094a27eb3f0c07d269939dadac23553beda839499dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2415</topic><topic>631/208/480</topic><topic>Agriculture</topic><topic>Computer applications</topic><topic>Drought resistance</topic><topic>Gene expression</topic><topic>Genetic analysis</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Molecular Imaging</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Plant Breeding</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Cruz, Marco</creatorcontrib><creatorcontrib>Olson, Eric</creatorcontrib><creatorcontrib>Rovere, Gabriel</creatorcontrib><creatorcontrib>Crossa, Jose</creatorcontrib><creatorcontrib>Dreisigacker, Susanne</creatorcontrib><creatorcontrib>Mondal, Suchismita</creatorcontrib><creatorcontrib>Singh, Ravi</creatorcontrib><creatorcontrib>Campos, Gustavo de los</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Cruz, Marco</au><au>Olson, Eric</au><au>Rovere, Gabriel</au><au>Crossa, Jose</au><au>Dreisigacker, Susanne</au><au>Mondal, Suchismita</au><au>Singh, Ravi</au><au>Campos, Gustavo de los</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized selection indices for breeding value prediction using hyper-spectral image data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-18</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8195</spage><epage>8195</epage><pages>8195-8195</pages><artnum>8195</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32424224</pmid><doi>10.1038/s41598-020-65011-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-4676-5071</orcidid><orcidid>https://orcid.org/0000-0002-3546-5989</orcidid><orcidid>https://orcid.org/0000-0002-8582-8899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-05, Vol.10 (1), p.8195-8195, Article 8195
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235263
source Springer Open Access; Nature (Open Access); MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library; Directory of Open Access Journals (Open Access)
subjects 631/114/2415
631/208/480
Agriculture
Computer applications
Drought resistance
Gene expression
Genetic analysis
Genomes
Humanities and Social Sciences
Molecular Imaging
multidisciplinary
Phenotype
Phenotypes
Phenotyping
Plant Breeding
Science
Science (multidisciplinary)
Wheat
title Regularized selection indices for breeding value prediction using hyper-spectral image data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20selection%20indices%20for%20breeding%20value%20prediction%20using%20hyper-spectral%20image%20data&rft.jtitle=Scientific%20reports&rft.au=Lopez-Cruz,%20Marco&rft.date=2020-05-18&rft.volume=10&rft.issue=1&rft.spage=8195&rft.epage=8195&rft.pages=8195-8195&rft.artnum=8195&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-65011-2&rft_dat=%3Cproquest_pubme%3E2404640930%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404342536&rft_id=info:pmid/32424224&rfr_iscdi=true