Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were em...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2020 |
creator | Huang, Yihua Lin, Xiaofeng Pang, Zhiyong Jiang, Xinhua Jiao, Han Li, Li |
description | Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case. |
doi_str_mv | 10.1155/2020/2413706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7232735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407316732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EoqVw44x8RIK0_ohj54LU7hZaqQWJD4mbNbEnrSGJl9hpxb8n21229MZpRjPPvDOjl5CXnB1yrtSRYIIdiZJLzapHZJ_r0hSV5ubxLmff98izlH4wprhW_CnZk6JUpdH1PvFLxBVdxOEmdlMOcYCOfsRpvAv5No4_U3ECCT09nnLsIQdHT0aElOkXvOpxyLCeojB4egkp0SVmdHelMNDl4rS4_Hz-nDxpoUv4YhsPyLf3p18XZ8XFpw_ni-OLwilW50IyoVrnTGNMiw0YcLJunTIo0QvPUbCmqivkLVPaa1TGacHapgLvRF07kAfk3UZ3NTU9ejdfNz9iV2PoYfxtIwT7sDOEa3sVb6wWUmipZoHXW4Ex_powZduH5LDrYMA4JStKpiWvtBQz-naDujGmNGK7W8OZXRtj18bYrTEz_urf03bwXydm4M0GuA6Dh9vwn3I4M9jCPc1lLatK_gGmP6Fi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407316732</pqid></control><display><type>article</type><title>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Huang, Yihua ; Lin, Xiaofeng ; Pang, Zhiyong ; Jiang, Xinhua ; Jiao, Han ; Li, Li</creator><contributor>Conti, Allegra</contributor><creatorcontrib>Huang, Yihua ; Lin, Xiaofeng ; Pang, Zhiyong ; Jiang, Xinhua ; Jiao, Han ; Li, Li ; Conti, Allegra</creatorcontrib><description>Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2020/2413706</identifier><identifier>PMID: 32454879</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adult ; Aged ; Breast - diagnostic imaging ; Breast - pathology ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Computational Biology ; Contrast Media ; Databases, Factual - statistics & numerical data ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Interpretation, Computer-Assisted - statistics & numerical data ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics & numerical data ; Middle Aged ; Neural Networks, Computer ; Young Adult</subject><ispartof>Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Han Jiao et al.</rights><rights>Copyright © 2020 Han Jiao et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</citedby><cites>FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</cites><orcidid>0000-0003-3608-291X ; 0000-0001-6736-7913 ; 0000-0002-4712-2692 ; 0000-0003-1884-3412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232735/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232735/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32454879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Conti, Allegra</contributor><creatorcontrib>Huang, Yihua</creatorcontrib><creatorcontrib>Lin, Xiaofeng</creatorcontrib><creatorcontrib>Pang, Zhiyong</creatorcontrib><creatorcontrib>Jiang, Xinhua</creatorcontrib><creatorcontrib>Jiao, Han</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.</description><subject>Adult</subject><subject>Aged</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Computational Biology</subject><subject>Contrast Media</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Interpretation, Computer-Assisted - statistics & numerical data</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Young Adult</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EoqVw44x8RIK0_ohj54LU7hZaqQWJD4mbNbEnrSGJl9hpxb8n21229MZpRjPPvDOjl5CXnB1yrtSRYIIdiZJLzapHZJ_r0hSV5ubxLmff98izlH4wprhW_CnZk6JUpdH1PvFLxBVdxOEmdlMOcYCOfsRpvAv5No4_U3ECCT09nnLsIQdHT0aElOkXvOpxyLCeojB4egkp0SVmdHelMNDl4rS4_Hz-nDxpoUv4YhsPyLf3p18XZ8XFpw_ni-OLwilW50IyoVrnTGNMiw0YcLJunTIo0QvPUbCmqivkLVPaa1TGacHapgLvRF07kAfk3UZ3NTU9ejdfNz9iV2PoYfxtIwT7sDOEa3sVb6wWUmipZoHXW4Ex_powZduH5LDrYMA4JStKpiWvtBQz-naDujGmNGK7W8OZXRtj18bYrTEz_urf03bwXydm4M0GuA6Dh9vwn3I4M9jCPc1lLatK_gGmP6Fi</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Huang, Yihua</creator><creator>Lin, Xiaofeng</creator><creator>Pang, Zhiyong</creator><creator>Jiang, Xinhua</creator><creator>Jiao, Han</creator><creator>Li, Li</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3608-291X</orcidid><orcidid>https://orcid.org/0000-0001-6736-7913</orcidid><orcidid>https://orcid.org/0000-0002-4712-2692</orcidid><orcidid>https://orcid.org/0000-0003-1884-3412</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</title><author>Huang, Yihua ; Lin, Xiaofeng ; Pang, Zhiyong ; Jiang, Xinhua ; Jiao, Han ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Computational Biology</topic><topic>Contrast Media</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Interpretation, Computer-Assisted - statistics & numerical data</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yihua</creatorcontrib><creatorcontrib>Lin, Xiaofeng</creatorcontrib><creatorcontrib>Pang, Zhiyong</creatorcontrib><creatorcontrib>Jiang, Xinhua</creatorcontrib><creatorcontrib>Jiao, Han</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yihua</au><au>Lin, Xiaofeng</au><au>Pang, Zhiyong</au><au>Jiang, Xinhua</au><au>Jiao, Han</au><au>Li, Li</au><au>Conti, Allegra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32454879</pmid><doi>10.1155/2020/2413706</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3608-291X</orcidid><orcidid>https://orcid.org/0000-0001-6736-7913</orcidid><orcidid>https://orcid.org/0000-0002-4712-2692</orcidid><orcidid>https://orcid.org/0000-0003-1884-3412</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-12 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7232735 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adult Aged Breast - diagnostic imaging Breast - pathology Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Computational Biology Contrast Media Databases, Factual - statistics & numerical data Female Humans Image Interpretation, Computer-Assisted - methods Image Interpretation, Computer-Assisted - statistics & numerical data Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Middle Aged Neural Networks, Computer Young Adult |
title | Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Convolutional%20Neural%20Networks-Based%20Automatic%20Breast%20Segmentation%20and%20Mass%20Detection%20in%20DCE-MRI&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Huang,%20Yihua&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2020/2413706&rft_dat=%3Cproquest_pubme%3E2407316732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407316732&rft_id=info:pmid/32454879&rfr_iscdi=true |