Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI

Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Huang, Yihua, Lin, Xiaofeng, Pang, Zhiyong, Jiang, Xinhua, Jiao, Han, Li, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2020
creator Huang, Yihua
Lin, Xiaofeng
Pang, Zhiyong
Jiang, Xinhua
Jiao, Han
Li, Li
description Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.
doi_str_mv 10.1155/2020/2413706
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7232735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407316732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EoqVw44x8RIK0_ohj54LU7hZaqQWJD4mbNbEnrSGJl9hpxb8n21229MZpRjPPvDOjl5CXnB1yrtSRYIIdiZJLzapHZJ_r0hSV5ubxLmff98izlH4wprhW_CnZk6JUpdH1PvFLxBVdxOEmdlMOcYCOfsRpvAv5No4_U3ECCT09nnLsIQdHT0aElOkXvOpxyLCeojB4egkp0SVmdHelMNDl4rS4_Hz-nDxpoUv4YhsPyLf3p18XZ8XFpw_ni-OLwilW50IyoVrnTGNMiw0YcLJunTIo0QvPUbCmqivkLVPaa1TGacHapgLvRF07kAfk3UZ3NTU9ejdfNz9iV2PoYfxtIwT7sDOEa3sVb6wWUmipZoHXW4Ex_powZduH5LDrYMA4JStKpiWvtBQz-naDujGmNGK7W8OZXRtj18bYrTEz_urf03bwXydm4M0GuA6Dh9vwn3I4M9jCPc1lLatK_gGmP6Fi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407316732</pqid></control><display><type>article</type><title>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Huang, Yihua ; Lin, Xiaofeng ; Pang, Zhiyong ; Jiang, Xinhua ; Jiao, Han ; Li, Li</creator><contributor>Conti, Allegra</contributor><creatorcontrib>Huang, Yihua ; Lin, Xiaofeng ; Pang, Zhiyong ; Jiang, Xinhua ; Jiao, Han ; Li, Li ; Conti, Allegra</creatorcontrib><description>Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2020/2413706</identifier><identifier>PMID: 32454879</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adult ; Aged ; Breast - diagnostic imaging ; Breast - pathology ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Computational Biology ; Contrast Media ; Databases, Factual - statistics &amp; numerical data ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Interpretation, Computer-Assisted - statistics &amp; numerical data ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Middle Aged ; Neural Networks, Computer ; Young Adult</subject><ispartof>Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Han Jiao et al.</rights><rights>Copyright © 2020 Han Jiao et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</citedby><cites>FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</cites><orcidid>0000-0003-3608-291X ; 0000-0001-6736-7913 ; 0000-0002-4712-2692 ; 0000-0003-1884-3412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232735/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232735/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32454879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Conti, Allegra</contributor><creatorcontrib>Huang, Yihua</creatorcontrib><creatorcontrib>Lin, Xiaofeng</creatorcontrib><creatorcontrib>Pang, Zhiyong</creatorcontrib><creatorcontrib>Jiang, Xinhua</creatorcontrib><creatorcontrib>Jiao, Han</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.</description><subject>Adult</subject><subject>Aged</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Computational Biology</subject><subject>Contrast Media</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Interpretation, Computer-Assisted - statistics &amp; numerical data</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Young Adult</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EoqVw44x8RIK0_ohj54LU7hZaqQWJD4mbNbEnrSGJl9hpxb8n21229MZpRjPPvDOjl5CXnB1yrtSRYIIdiZJLzapHZJ_r0hSV5ubxLmff98izlH4wprhW_CnZk6JUpdH1PvFLxBVdxOEmdlMOcYCOfsRpvAv5No4_U3ECCT09nnLsIQdHT0aElOkXvOpxyLCeojB4egkp0SVmdHelMNDl4rS4_Hz-nDxpoUv4YhsPyLf3p18XZ8XFpw_ni-OLwilW50IyoVrnTGNMiw0YcLJunTIo0QvPUbCmqivkLVPaa1TGacHapgLvRF07kAfk3UZ3NTU9ejdfNz9iV2PoYfxtIwT7sDOEa3sVb6wWUmipZoHXW4Ex_powZduH5LDrYMA4JStKpiWvtBQz-naDujGmNGK7W8OZXRtj18bYrTEz_urf03bwXydm4M0GuA6Dh9vwn3I4M9jCPc1lLatK_gGmP6Fi</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Huang, Yihua</creator><creator>Lin, Xiaofeng</creator><creator>Pang, Zhiyong</creator><creator>Jiang, Xinhua</creator><creator>Jiao, Han</creator><creator>Li, Li</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3608-291X</orcidid><orcidid>https://orcid.org/0000-0001-6736-7913</orcidid><orcidid>https://orcid.org/0000-0002-4712-2692</orcidid><orcidid>https://orcid.org/0000-0003-1884-3412</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</title><author>Huang, Yihua ; Lin, Xiaofeng ; Pang, Zhiyong ; Jiang, Xinhua ; Jiao, Han ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-3025fcc8b88feba8ac39fc58e3ed2d1e20b696e1f057d7e58c720fb6adc299ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Computational Biology</topic><topic>Contrast Media</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Interpretation, Computer-Assisted - statistics &amp; numerical data</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yihua</creatorcontrib><creatorcontrib>Lin, Xiaofeng</creatorcontrib><creatorcontrib>Pang, Zhiyong</creatorcontrib><creatorcontrib>Jiang, Xinhua</creatorcontrib><creatorcontrib>Jiao, Han</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yihua</au><au>Lin, Xiaofeng</au><au>Pang, Zhiyong</au><au>Jiang, Xinhua</au><au>Jiao, Han</au><au>Li, Li</au><au>Conti, Allegra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32454879</pmid><doi>10.1155/2020/2413706</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3608-291X</orcidid><orcidid>https://orcid.org/0000-0001-6736-7913</orcidid><orcidid>https://orcid.org/0000-0002-4712-2692</orcidid><orcidid>https://orcid.org/0000-0003-1884-3412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-12
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7232735
source MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
Aged
Breast - diagnostic imaging
Breast - pathology
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Computational Biology
Contrast Media
Databases, Factual - statistics & numerical data
Female
Humans
Image Interpretation, Computer-Assisted - methods
Image Interpretation, Computer-Assisted - statistics & numerical data
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Middle Aged
Neural Networks, Computer
Young Adult
title Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Convolutional%20Neural%20Networks-Based%20Automatic%20Breast%20Segmentation%20and%20Mass%20Detection%20in%20DCE-MRI&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Huang,%20Yihua&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2020/2413706&rft_dat=%3Cproquest_pubme%3E2407316732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407316732&rft_id=info:pmid/32454879&rfr_iscdi=true