How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M6L12 and M12L24 Nanospheres

Catalysis in confined spaces, such as those provided by supramolecular cages, is quickly gaining momentum. It allows for second coordination sphere strategies to control the selectivity and activity of transition metal catalysts, beyond the classical methods like fine-tuning the steric and electroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-05, Vol.142 (19), p.8837-8847
Hauptverfasser: Zaffaroni, Riccardo, Bobylev, Eduard O, Plessius, Raoul, van der Vlugt, Jarl Ivar, Reek, Joost N. H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8847
container_issue 19
container_start_page 8837
container_title Journal of the American Chemical Society
container_volume 142
creator Zaffaroni, Riccardo
Bobylev, Eduard O
Plessius, Raoul
van der Vlugt, Jarl Ivar
Reek, Joost N. H
description Catalysis in confined spaces, such as those provided by supramolecular cages, is quickly gaining momentum. It allows for second coordination sphere strategies to control the selectivity and activity of transition metal catalysts, beyond the classical methods like fine-tuning the steric and electronic properties of the coordinating ligands. Only a few electrocatalytic reactions within cages have been reported, and there is no information regarding the electron transfer kinetics and thermodynamics of redox-active species encapsulated into supramolecular assemblies. This contribution revolves around the preparation of M6L12 and larger M12L24 (M = Pd or Pt) nanospheres functionalized with different numbers of redox-active probes encapsulated within their cavity, either in a covalent fashion via different types of linkers (flexible, rigid and conjugated or rigid and nonconjugated) or by supramolecular hydrogen bonding interactions. The redox probes can be addressed by electrochemical electron transfer across the rim of nanospheres, and the thermodynamics and kinetics of this process are described. Our study identifies that the linker type and the number of redox probes within the cage are useful handles to fine-tune the electron transfer rates, paving the way for the encapsulation of electroactive catalysts and electrocatalytic applications of such supramolecular assemblies.
doi_str_mv 10.1021/jacs.0c01869
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7232678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391981920</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-f610974361353bb93513e8098b81e279215d4919930189c4d7c1828a1f37e6793</originalsourceid><addsrcrecordid>eNpVkU9LAzEQxYMotlZvfoAcvWzNTPZPchGkqBVaBannkG5n2y3bTU22it_e1BbE0zDMvDe8-TF2DWIIAuF2bcswFKUAlesT1ocMRZIB5qesL4TApFC57LGLENaxTVHBOetJlFGKWZ_VY_fFO8dHru28a3i3Iv5mO-Ku4mPqyLslteR2gT80VMaVls-8bUNFntvSuxAOknqzV0zzCSC37YJPASeY8hfburBdkadwyc4q2wS6OtYBe398mI3GyeT16Xl0P0msBNElVQ5CF6nMQWZyPtcyA0lKaDVXQFhohGyRatBaxsS6TBdFCQqVhUoWlBdaDtjdwXe7m29oUVIMZhuz9fXG-m_jbG3-T9p6ZZbu0xQoMS9UNLg5Gnj3saPQmU0dSmoa-_sIgzKeV6BR_K1GBmbtdr6NyQwIsydj9mTMkYz8AfhZfaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391981920</pqid></control><display><type>article</type><title>How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M6L12 and M12L24 Nanospheres</title><source>American Chemical Society Journals</source><creator>Zaffaroni, Riccardo ; Bobylev, Eduard O ; Plessius, Raoul ; van der Vlugt, Jarl Ivar ; Reek, Joost N. H</creator><creatorcontrib>Zaffaroni, Riccardo ; Bobylev, Eduard O ; Plessius, Raoul ; van der Vlugt, Jarl Ivar ; Reek, Joost N. H</creatorcontrib><description>Catalysis in confined spaces, such as those provided by supramolecular cages, is quickly gaining momentum. It allows for second coordination sphere strategies to control the selectivity and activity of transition metal catalysts, beyond the classical methods like fine-tuning the steric and electronic properties of the coordinating ligands. Only a few electrocatalytic reactions within cages have been reported, and there is no information regarding the electron transfer kinetics and thermodynamics of redox-active species encapsulated into supramolecular assemblies. This contribution revolves around the preparation of M6L12 and larger M12L24 (M = Pd or Pt) nanospheres functionalized with different numbers of redox-active probes encapsulated within their cavity, either in a covalent fashion via different types of linkers (flexible, rigid and conjugated or rigid and nonconjugated) or by supramolecular hydrogen bonding interactions. The redox probes can be addressed by electrochemical electron transfer across the rim of nanospheres, and the thermodynamics and kinetics of this process are described. Our study identifies that the linker type and the number of redox probes within the cage are useful handles to fine-tune the electron transfer rates, paving the way for the encapsulation of electroactive catalysts and electrocatalytic applications of such supramolecular assemblies.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c01869</identifier><identifier>PMID: 32302125</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-05, Vol.142 (19), p.8837-8847</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0665-9239 ; 0000-0001-5024-508X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c01869$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c01869$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zaffaroni, Riccardo</creatorcontrib><creatorcontrib>Bobylev, Eduard O</creatorcontrib><creatorcontrib>Plessius, Raoul</creatorcontrib><creatorcontrib>van der Vlugt, Jarl Ivar</creatorcontrib><creatorcontrib>Reek, Joost N. H</creatorcontrib><title>How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M6L12 and M12L24 Nanospheres</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Catalysis in confined spaces, such as those provided by supramolecular cages, is quickly gaining momentum. It allows for second coordination sphere strategies to control the selectivity and activity of transition metal catalysts, beyond the classical methods like fine-tuning the steric and electronic properties of the coordinating ligands. Only a few electrocatalytic reactions within cages have been reported, and there is no information regarding the electron transfer kinetics and thermodynamics of redox-active species encapsulated into supramolecular assemblies. This contribution revolves around the preparation of M6L12 and larger M12L24 (M = Pd or Pt) nanospheres functionalized with different numbers of redox-active probes encapsulated within their cavity, either in a covalent fashion via different types of linkers (flexible, rigid and conjugated or rigid and nonconjugated) or by supramolecular hydrogen bonding interactions. The redox probes can be addressed by electrochemical electron transfer across the rim of nanospheres, and the thermodynamics and kinetics of this process are described. Our study identifies that the linker type and the number of redox probes within the cage are useful handles to fine-tune the electron transfer rates, paving the way for the encapsulation of electroactive catalysts and electrocatalytic applications of such supramolecular assemblies.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkU9LAzEQxYMotlZvfoAcvWzNTPZPchGkqBVaBannkG5n2y3bTU22it_e1BbE0zDMvDe8-TF2DWIIAuF2bcswFKUAlesT1ocMRZIB5qesL4TApFC57LGLENaxTVHBOetJlFGKWZ_VY_fFO8dHru28a3i3Iv5mO-Ku4mPqyLslteR2gT80VMaVls-8bUNFntvSuxAOknqzV0zzCSC37YJPASeY8hfburBdkadwyc4q2wS6OtYBe398mI3GyeT16Xl0P0msBNElVQ5CF6nMQWZyPtcyA0lKaDVXQFhohGyRatBaxsS6TBdFCQqVhUoWlBdaDtjdwXe7m29oUVIMZhuz9fXG-m_jbG3-T9p6ZZbu0xQoMS9UNLg5Gnj3saPQmU0dSmoa-_sIgzKeV6BR_K1GBmbtdr6NyQwIsydj9mTMkYz8AfhZfaU</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Zaffaroni, Riccardo</creator><creator>Bobylev, Eduard O</creator><creator>Plessius, Raoul</creator><creator>van der Vlugt, Jarl Ivar</creator><creator>Reek, Joost N. H</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0665-9239</orcidid><orcidid>https://orcid.org/0000-0001-5024-508X</orcidid></search><sort><creationdate>20200513</creationdate><title>How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M6L12 and M12L24 Nanospheres</title><author>Zaffaroni, Riccardo ; Bobylev, Eduard O ; Plessius, Raoul ; van der Vlugt, Jarl Ivar ; Reek, Joost N. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-f610974361353bb93513e8098b81e279215d4919930189c4d7c1828a1f37e6793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaffaroni, Riccardo</creatorcontrib><creatorcontrib>Bobylev, Eduard O</creatorcontrib><creatorcontrib>Plessius, Raoul</creatorcontrib><creatorcontrib>van der Vlugt, Jarl Ivar</creatorcontrib><creatorcontrib>Reek, Joost N. H</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaffaroni, Riccardo</au><au>Bobylev, Eduard O</au><au>Plessius, Raoul</au><au>van der Vlugt, Jarl Ivar</au><au>Reek, Joost N. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M6L12 and M12L24 Nanospheres</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>142</volume><issue>19</issue><spage>8837</spage><epage>8847</epage><pages>8837-8847</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Catalysis in confined spaces, such as those provided by supramolecular cages, is quickly gaining momentum. It allows for second coordination sphere strategies to control the selectivity and activity of transition metal catalysts, beyond the classical methods like fine-tuning the steric and electronic properties of the coordinating ligands. Only a few electrocatalytic reactions within cages have been reported, and there is no information regarding the electron transfer kinetics and thermodynamics of redox-active species encapsulated into supramolecular assemblies. This contribution revolves around the preparation of M6L12 and larger M12L24 (M = Pd or Pt) nanospheres functionalized with different numbers of redox-active probes encapsulated within their cavity, either in a covalent fashion via different types of linkers (flexible, rigid and conjugated or rigid and nonconjugated) or by supramolecular hydrogen bonding interactions. The redox probes can be addressed by electrochemical electron transfer across the rim of nanospheres, and the thermodynamics and kinetics of this process are described. Our study identifies that the linker type and the number of redox probes within the cage are useful handles to fine-tune the electron transfer rates, paving the way for the encapsulation of electroactive catalysts and electrocatalytic applications of such supramolecular assemblies.</abstract><pub>American Chemical Society</pub><pmid>32302125</pmid><doi>10.1021/jacs.0c01869</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0665-9239</orcidid><orcidid>https://orcid.org/0000-0001-5024-508X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-05, Vol.142 (19), p.8837-8847
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7232678
source American Chemical Society Journals
title How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M6L12 and M12L24 Nanospheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Control%20the%20Rate%20of%20Heterogeneous%20Electron%20Transfer%20across%20the%20Rim%20of%20M6L12%20and%20M12L24%20Nanospheres&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zaffaroni,%20Riccardo&rft.date=2020-05-13&rft.volume=142&rft.issue=19&rft.spage=8837&rft.epage=8847&rft.pages=8837-8847&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c01869&rft_dat=%3Cproquest_pubme%3E2391981920%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391981920&rft_id=info:pmid/32302125&rfr_iscdi=true