A single TRPV1 amino acid controls species sensitivity to capsaicin

Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-05, Vol.10 (1), p.8038, Article 8038
Hauptverfasser: Chu, Ying, Cohen, Bruce E., Chuang, Huai-hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8038
container_title Scientific reports
container_volume 10
creator Chu, Ying
Cohen, Bruce E.
Chuang, Huai-hu
description Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca 2+ imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.
doi_str_mv 10.1038/s41598-020-64584-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7229161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403301636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMobsz9AS-k6HU1X03aG2EMv0BQZHgb0jTdMrqkNtlg_95o55w35uYEznPec15eAM4RvEaQ5DeeoqzIU4hhymiW0xQfgSGGNEsxwfj44D8AY--XML4MFxQVp2BAcJxGHA3BdJJ4Y-eNTmZvr-8okStjXSKVqRLlbOhc4xPfamV0rNp6E8zGhG0SXKJk66VRxp6Bk1o2Xo93dQRm93ez6WP6_PLwNJ08pypjPKRVpbCitJCUVpIpDkuuieRaqTKnNc05RzQv68iyivG8LCEuJKtzzAnlpCQjcNvLtutypSul43myEW1nVrLbCieN-NuxZiHmbiM4xgViKApc9gLOByO8MkGrRXRptQoCMYIYhxG62m3p3Mda-yCWbt3Z6EtgCgmBEWSRwj2lOud9p-v9GQiKr3xEn4-I-YjvfASOQxeHBvYjP2lEgPSAjy07193v7n9kPwHvsJqZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403301636</pqid></control><display><type>article</type><title>A single TRPV1 amino acid controls species sensitivity to capsaicin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chu, Ying ; Cohen, Bruce E. ; Chuang, Huai-hu</creator><creatorcontrib>Chu, Ying ; Cohen, Bruce E. ; Chuang, Huai-hu ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca 2+ imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64584-2</identifier><identifier>PMID: 32415171</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/378 ; 631/443 ; 631/45 ; 631/80 ; 631/92 ; Alanine ; Amino Acid Substitution ; Amino acids ; Amino Acids - chemistry ; Amino Acids - genetics ; Animals ; BASIC BIOLOGICAL SCIENCES ; Calcium (intracellular) ; Calcium imaging ; Capsaicin ; Capsaicin - chemistry ; Capsaicin - pharmacology ; Capsaicin receptors ; Chickens ; Chimeras ; Drug Resistance - genetics ; Glutamic acid receptors ; Glutamine ; Humanities and Social Sciences ; Humans ; Ligands ; Lysine ; Membrane potential ; multidisciplinary ; Mutagenesis ; Mutants ; Mutation ; Proline ; Rats ; Receptor mechanisms ; Science ; Science (multidisciplinary) ; Sensory neurons ; Species ; Species Specificity ; Structure-Activity Relationship ; Transient receptor potential proteins ; TRPV Cation Channels - chemistry ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism ; Zingerone</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8038, Article 8038</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</citedby><cites>FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32415171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1631670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Ying</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chuang, Huai-hu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>A single TRPV1 amino acid controls species sensitivity to capsaicin</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca 2+ imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.</description><subject>631/337</subject><subject>631/378</subject><subject>631/443</subject><subject>631/45</subject><subject>631/80</subject><subject>631/92</subject><subject>Alanine</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Calcium (intracellular)</subject><subject>Calcium imaging</subject><subject>Capsaicin</subject><subject>Capsaicin - chemistry</subject><subject>Capsaicin - pharmacology</subject><subject>Capsaicin receptors</subject><subject>Chickens</subject><subject>Chimeras</subject><subject>Drug Resistance - genetics</subject><subject>Glutamic acid receptors</subject><subject>Glutamine</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ligands</subject><subject>Lysine</subject><subject>Membrane potential</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Proline</subject><subject>Rats</subject><subject>Receptor mechanisms</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory neurons</subject><subject>Species</subject><subject>Species Specificity</subject><subject>Structure-Activity Relationship</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - chemistry</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><subject>Zingerone</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LwzAUhoMobsz9AS-k6HU1X03aG2EMv0BQZHgb0jTdMrqkNtlg_95o55w35uYEznPec15eAM4RvEaQ5DeeoqzIU4hhymiW0xQfgSGGNEsxwfj44D8AY--XML4MFxQVp2BAcJxGHA3BdJJ4Y-eNTmZvr-8okStjXSKVqRLlbOhc4xPfamV0rNp6E8zGhG0SXKJk66VRxp6Bk1o2Xo93dQRm93ez6WP6_PLwNJ08pypjPKRVpbCitJCUVpIpDkuuieRaqTKnNc05RzQv68iyivG8LCEuJKtzzAnlpCQjcNvLtutypSul43myEW1nVrLbCieN-NuxZiHmbiM4xgViKApc9gLOByO8MkGrRXRptQoCMYIYhxG62m3p3Mda-yCWbt3Z6EtgCgmBEWSRwj2lOud9p-v9GQiKr3xEn4-I-YjvfASOQxeHBvYjP2lEgPSAjy07193v7n9kPwHvsJqZ</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Chu, Ying</creator><creator>Cohen, Bruce E.</creator><creator>Chuang, Huai-hu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20200515</creationdate><title>A single TRPV1 amino acid controls species sensitivity to capsaicin</title><author>Chu, Ying ; Cohen, Bruce E. ; Chuang, Huai-hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337</topic><topic>631/378</topic><topic>631/443</topic><topic>631/45</topic><topic>631/80</topic><topic>631/92</topic><topic>Alanine</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Calcium (intracellular)</topic><topic>Calcium imaging</topic><topic>Capsaicin</topic><topic>Capsaicin - chemistry</topic><topic>Capsaicin - pharmacology</topic><topic>Capsaicin receptors</topic><topic>Chickens</topic><topic>Chimeras</topic><topic>Drug Resistance - genetics</topic><topic>Glutamic acid receptors</topic><topic>Glutamine</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ligands</topic><topic>Lysine</topic><topic>Membrane potential</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Proline</topic><topic>Rats</topic><topic>Receptor mechanisms</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory neurons</topic><topic>Species</topic><topic>Species Specificity</topic><topic>Structure-Activity Relationship</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - chemistry</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><topic>Zingerone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Ying</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chuang, Huai-hu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Ying</au><au>Cohen, Bruce E.</au><au>Chuang, Huai-hu</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single TRPV1 amino acid controls species sensitivity to capsaicin</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8038</spage><pages>8038-</pages><artnum>8038</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca 2+ imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32415171</pmid><doi>10.1038/s41598-020-64584-2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-05, Vol.10 (1), p.8038, Article 8038
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7229161
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/337
631/378
631/443
631/45
631/80
631/92
Alanine
Amino Acid Substitution
Amino acids
Amino Acids - chemistry
Amino Acids - genetics
Animals
BASIC BIOLOGICAL SCIENCES
Calcium (intracellular)
Calcium imaging
Capsaicin
Capsaicin - chemistry
Capsaicin - pharmacology
Capsaicin receptors
Chickens
Chimeras
Drug Resistance - genetics
Glutamic acid receptors
Glutamine
Humanities and Social Sciences
Humans
Ligands
Lysine
Membrane potential
multidisciplinary
Mutagenesis
Mutants
Mutation
Proline
Rats
Receptor mechanisms
Science
Science (multidisciplinary)
Sensory neurons
Species
Species Specificity
Structure-Activity Relationship
Transient receptor potential proteins
TRPV Cation Channels - chemistry
TRPV Cation Channels - genetics
TRPV Cation Channels - metabolism
Zingerone
title A single TRPV1 amino acid controls species sensitivity to capsaicin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20TRPV1%20amino%20acid%20controls%20species%20sensitivity%20to%20capsaicin&rft.jtitle=Scientific%20reports&rft.au=Chu,%20Ying&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-05-15&rft.volume=10&rft.issue=1&rft.spage=8038&rft.pages=8038-&rft.artnum=8038&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64584-2&rft_dat=%3Cproquest_pubme%3E2403301636%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403301636&rft_id=info:pmid/32415171&rfr_iscdi=true