A single TRPV1 amino acid controls species sensitivity to capsaicin
Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species,...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-05, Vol.10 (1), p.8038, Article 8038 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 8038 |
container_title | Scientific reports |
container_volume | 10 |
creator | Chu, Ying Cohen, Bruce E. Chuang, Huai-hu |
description | Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca
2+
imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses. |
doi_str_mv | 10.1038/s41598-020-64584-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7229161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403301636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMobsz9AS-k6HU1X03aG2EMv0BQZHgb0jTdMrqkNtlg_95o55w35uYEznPec15eAM4RvEaQ5DeeoqzIU4hhymiW0xQfgSGGNEsxwfj44D8AY--XML4MFxQVp2BAcJxGHA3BdJJ4Y-eNTmZvr-8okStjXSKVqRLlbOhc4xPfamV0rNp6E8zGhG0SXKJk66VRxp6Bk1o2Xo93dQRm93ez6WP6_PLwNJ08pypjPKRVpbCitJCUVpIpDkuuieRaqTKnNc05RzQv68iyivG8LCEuJKtzzAnlpCQjcNvLtutypSul43myEW1nVrLbCieN-NuxZiHmbiM4xgViKApc9gLOByO8MkGrRXRptQoCMYIYhxG62m3p3Mda-yCWbt3Z6EtgCgmBEWSRwj2lOud9p-v9GQiKr3xEn4-I-YjvfASOQxeHBvYjP2lEgPSAjy07193v7n9kPwHvsJqZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403301636</pqid></control><display><type>article</type><title>A single TRPV1 amino acid controls species sensitivity to capsaicin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chu, Ying ; Cohen, Bruce E. ; Chuang, Huai-hu</creator><creatorcontrib>Chu, Ying ; Cohen, Bruce E. ; Chuang, Huai-hu ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca
2+
imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64584-2</identifier><identifier>PMID: 32415171</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/378 ; 631/443 ; 631/45 ; 631/80 ; 631/92 ; Alanine ; Amino Acid Substitution ; Amino acids ; Amino Acids - chemistry ; Amino Acids - genetics ; Animals ; BASIC BIOLOGICAL SCIENCES ; Calcium (intracellular) ; Calcium imaging ; Capsaicin ; Capsaicin - chemistry ; Capsaicin - pharmacology ; Capsaicin receptors ; Chickens ; Chimeras ; Drug Resistance - genetics ; Glutamic acid receptors ; Glutamine ; Humanities and Social Sciences ; Humans ; Ligands ; Lysine ; Membrane potential ; multidisciplinary ; Mutagenesis ; Mutants ; Mutation ; Proline ; Rats ; Receptor mechanisms ; Science ; Science (multidisciplinary) ; Sensory neurons ; Species ; Species Specificity ; Structure-Activity Relationship ; Transient receptor potential proteins ; TRPV Cation Channels - chemistry ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism ; Zingerone</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8038, Article 8038</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</citedby><cites>FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32415171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1631670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Ying</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chuang, Huai-hu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>A single TRPV1 amino acid controls species sensitivity to capsaicin</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca
2+
imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.</description><subject>631/337</subject><subject>631/378</subject><subject>631/443</subject><subject>631/45</subject><subject>631/80</subject><subject>631/92</subject><subject>Alanine</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Calcium (intracellular)</subject><subject>Calcium imaging</subject><subject>Capsaicin</subject><subject>Capsaicin - chemistry</subject><subject>Capsaicin - pharmacology</subject><subject>Capsaicin receptors</subject><subject>Chickens</subject><subject>Chimeras</subject><subject>Drug Resistance - genetics</subject><subject>Glutamic acid receptors</subject><subject>Glutamine</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ligands</subject><subject>Lysine</subject><subject>Membrane potential</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Proline</subject><subject>Rats</subject><subject>Receptor mechanisms</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory neurons</subject><subject>Species</subject><subject>Species Specificity</subject><subject>Structure-Activity Relationship</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - chemistry</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><subject>Zingerone</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LwzAUhoMobsz9AS-k6HU1X03aG2EMv0BQZHgb0jTdMrqkNtlg_95o55w35uYEznPec15eAM4RvEaQ5DeeoqzIU4hhymiW0xQfgSGGNEsxwfj44D8AY--XML4MFxQVp2BAcJxGHA3BdJJ4Y-eNTmZvr-8okStjXSKVqRLlbOhc4xPfamV0rNp6E8zGhG0SXKJk66VRxp6Bk1o2Xo93dQRm93ez6WP6_PLwNJ08pypjPKRVpbCitJCUVpIpDkuuieRaqTKnNc05RzQv68iyivG8LCEuJKtzzAnlpCQjcNvLtutypSul43myEW1nVrLbCieN-NuxZiHmbiM4xgViKApc9gLOByO8MkGrRXRptQoCMYIYhxG62m3p3Mda-yCWbt3Z6EtgCgmBEWSRwj2lOud9p-v9GQiKr3xEn4-I-YjvfASOQxeHBvYjP2lEgPSAjy07193v7n9kPwHvsJqZ</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Chu, Ying</creator><creator>Cohen, Bruce E.</creator><creator>Chuang, Huai-hu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20200515</creationdate><title>A single TRPV1 amino acid controls species sensitivity to capsaicin</title><author>Chu, Ying ; Cohen, Bruce E. ; Chuang, Huai-hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-ddc2c449a44da6c70b7e3a7eccb84f4877148bf5676d678bb029a6f8273473b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337</topic><topic>631/378</topic><topic>631/443</topic><topic>631/45</topic><topic>631/80</topic><topic>631/92</topic><topic>Alanine</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Calcium (intracellular)</topic><topic>Calcium imaging</topic><topic>Capsaicin</topic><topic>Capsaicin - chemistry</topic><topic>Capsaicin - pharmacology</topic><topic>Capsaicin receptors</topic><topic>Chickens</topic><topic>Chimeras</topic><topic>Drug Resistance - genetics</topic><topic>Glutamic acid receptors</topic><topic>Glutamine</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ligands</topic><topic>Lysine</topic><topic>Membrane potential</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Proline</topic><topic>Rats</topic><topic>Receptor mechanisms</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory neurons</topic><topic>Species</topic><topic>Species Specificity</topic><topic>Structure-Activity Relationship</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - chemistry</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><topic>Zingerone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Ying</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chuang, Huai-hu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Ying</au><au>Cohen, Bruce E.</au><au>Chuang, Huai-hu</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single TRPV1 amino acid controls species sensitivity to capsaicin</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8038</spage><pages>8038-</pages><artnum>8038</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca
2+
imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32415171</pmid><doi>10.1038/s41598-020-64584-2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-05, Vol.10 (1), p.8038, Article 8038 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7229161 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/337 631/378 631/443 631/45 631/80 631/92 Alanine Amino Acid Substitution Amino acids Amino Acids - chemistry Amino Acids - genetics Animals BASIC BIOLOGICAL SCIENCES Calcium (intracellular) Calcium imaging Capsaicin Capsaicin - chemistry Capsaicin - pharmacology Capsaicin receptors Chickens Chimeras Drug Resistance - genetics Glutamic acid receptors Glutamine Humanities and Social Sciences Humans Ligands Lysine Membrane potential multidisciplinary Mutagenesis Mutants Mutation Proline Rats Receptor mechanisms Science Science (multidisciplinary) Sensory neurons Species Species Specificity Structure-Activity Relationship Transient receptor potential proteins TRPV Cation Channels - chemistry TRPV Cation Channels - genetics TRPV Cation Channels - metabolism Zingerone |
title | A single TRPV1 amino acid controls species sensitivity to capsaicin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20TRPV1%20amino%20acid%20controls%20species%20sensitivity%20to%20capsaicin&rft.jtitle=Scientific%20reports&rft.au=Chu,%20Ying&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-05-15&rft.volume=10&rft.issue=1&rft.spage=8038&rft.pages=8038-&rft.artnum=8038&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64584-2&rft_dat=%3Cproquest_pubme%3E2403301636%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403301636&rft_id=info:pmid/32415171&rfr_iscdi=true |