One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension

Aims/hypothesis Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2020-06, Vol.63 (6), p.1211-1222
Hauptverfasser: Bilet, Lena, Phielix, Esther, van de Weijer, Tineke, Gemmink, Anne, Bosma, Madeleen, Moonen-Kornips, Esther, Jorgensen, Johanna A., Schaart, Gert, Zhang, Dongyan, Meijer, Kenneth, Hopman, Maria, Hesselink, Matthijs K. C., Ouwens, D. Margriet, Shulman, Gerald I., Schrauwen-Hinderling, Vera B., Schrauwen, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1222
container_issue 6
container_start_page 1211
container_title Diabetologia
container_volume 63
creator Bilet, Lena
Phielix, Esther
van de Weijer, Tineke
Gemmink, Anne
Bosma, Madeleen
Moonen-Kornips, Esther
Jorgensen, Johanna A.
Schaart, Gert
Zhang, Dongyan
Meijer, Kenneth
Hopman, Maria
Hesselink, Matthijs K. C.
Ouwens, D. Margriet
Shulman, Gerald I.
Schrauwen-Hinderling, Vera B.
Schrauwen, Patrick
description Aims/hypothesis Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. Methods Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m 2 ) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. Results In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14 CO 2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [ 14 C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. Conclusions/interpretation Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. Trial registration ClinicalTrial.gov NCT01576250. Funding PS was supported by a ‘VICI’ Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).
doi_str_mv 10.1007/s00125-020-05128-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403242751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a728790c5f186aa24de8e941e77b8ae2dab949e2b4eaa5ea1a0be757f481521e3</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhSMEopfCC7BAltiwIGA7znXCAglV_EmVugGJnTVx5t7rynGCHRfuY_JGTJpSfhasPM5852Q8OkXxWPAXgnP9MnEuZF1yyUteC9mU4k6xEaqSJVeyuVtsln4pmu2Xk-JBSpec86pW2_vFSSVFQ5XcFD8uApYe98wFsLO7cvORyj5bTAxYRKpmNwb6xgY3j_Ywhj468Gz87nogATILE1jSPSdojjAcR4veZw-ReTe5noG1eaD7tRGEfrXFnviUPTkntw_gqdqzPBGzylzY5USSVzTIIQ9A3Jz7I_vm5gPLwZEhRprEu6FjKacJw4I_LO7twCd8dHOeFp_fvf109qE8v3j_8ezNeWmVVnMJWja65bbe0YIApOqxwVYJ1LprAGUPXatalJ1CgBpBAO9Q13qnGlFLgdVp8Xr1nXI3YG9xebw3U3QDxKMZwZm_O8EdzH68MlrKpm01GTy7MYjj14xpNoNLy-og4JiTkZVumla325rQp_-gl2OOtDOiFK-kkroWRMmVsnFMKeLudhjBzZIYsybGUGLMdWLMInry5zNuJb8iQkC1AolaYY_x97__Y_sT4nTUPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403242751</pqid></control><display><type>article</type><title>One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bilet, Lena ; Phielix, Esther ; van de Weijer, Tineke ; Gemmink, Anne ; Bosma, Madeleen ; Moonen-Kornips, Esther ; Jorgensen, Johanna A. ; Schaart, Gert ; Zhang, Dongyan ; Meijer, Kenneth ; Hopman, Maria ; Hesselink, Matthijs K. C. ; Ouwens, D. Margriet ; Shulman, Gerald I. ; Schrauwen-Hinderling, Vera B. ; Schrauwen, Patrick</creator><creatorcontrib>Bilet, Lena ; Phielix, Esther ; van de Weijer, Tineke ; Gemmink, Anne ; Bosma, Madeleen ; Moonen-Kornips, Esther ; Jorgensen, Johanna A. ; Schaart, Gert ; Zhang, Dongyan ; Meijer, Kenneth ; Hopman, Maria ; Hesselink, Matthijs K. C. ; Ouwens, D. Margriet ; Shulman, Gerald I. ; Schrauwen-Hinderling, Vera B. ; Schrauwen, Patrick</creatorcontrib><description>Aims/hypothesis Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. Methods Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m 2 ) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. Results In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14 CO 2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [ 14 C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. Conclusions/interpretation Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. Trial registration ClinicalTrial.gov NCT01576250. Funding PS was supported by a ‘VICI’ Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-020-05128-1</identifier><identifier>PMID: 32185462</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Diabetes ; Diabetes mellitus (non-insulin dependent) ; Human Physiology ; Insulin ; Insulin resistance ; Internal Medicine ; Kinases ; Leg ; Lipids ; Medicine ; Medicine &amp; Public Health ; Membrane proteins ; Metabolic Diseases ; Metabolic disorders ; Mitochondria ; Oxidation ; Palmitic acid ; Phosphocreatine ; Protein kinase C</subject><ispartof>Diabetologia, 2020-06, Vol.63 (6), p.1211-1222</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a728790c5f186aa24de8e941e77b8ae2dab949e2b4eaa5ea1a0be757f481521e3</citedby><cites>FETCH-LOGICAL-c474t-a728790c5f186aa24de8e941e77b8ae2dab949e2b4eaa5ea1a0be757f481521e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-020-05128-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-020-05128-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32185462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilet, Lena</creatorcontrib><creatorcontrib>Phielix, Esther</creatorcontrib><creatorcontrib>van de Weijer, Tineke</creatorcontrib><creatorcontrib>Gemmink, Anne</creatorcontrib><creatorcontrib>Bosma, Madeleen</creatorcontrib><creatorcontrib>Moonen-Kornips, Esther</creatorcontrib><creatorcontrib>Jorgensen, Johanna A.</creatorcontrib><creatorcontrib>Schaart, Gert</creatorcontrib><creatorcontrib>Zhang, Dongyan</creatorcontrib><creatorcontrib>Meijer, Kenneth</creatorcontrib><creatorcontrib>Hopman, Maria</creatorcontrib><creatorcontrib>Hesselink, Matthijs K. C.</creatorcontrib><creatorcontrib>Ouwens, D. Margriet</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><creatorcontrib>Schrauwen-Hinderling, Vera B.</creatorcontrib><creatorcontrib>Schrauwen, Patrick</creatorcontrib><title>One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. Methods Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m 2 ) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. Results In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14 CO 2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [ 14 C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. Conclusions/interpretation Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. Trial registration ClinicalTrial.gov NCT01576250. Funding PS was supported by a ‘VICI’ Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).</description><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Human Physiology</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Leg</subject><subject>Lipids</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane proteins</subject><subject>Metabolic Diseases</subject><subject>Metabolic disorders</subject><subject>Mitochondria</subject><subject>Oxidation</subject><subject>Palmitic acid</subject><subject>Phosphocreatine</subject><subject>Protein kinase C</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks1u1TAQhSMEopfCC7BAltiwIGA7znXCAglV_EmVugGJnTVx5t7rynGCHRfuY_JGTJpSfhasPM5852Q8OkXxWPAXgnP9MnEuZF1yyUteC9mU4k6xEaqSJVeyuVtsln4pmu2Xk-JBSpec86pW2_vFSSVFQ5XcFD8uApYe98wFsLO7cvORyj5bTAxYRKpmNwb6xgY3j_Ywhj468Gz87nogATILE1jSPSdojjAcR4veZw-ReTe5noG1eaD7tRGEfrXFnviUPTkntw_gqdqzPBGzylzY5USSVzTIIQ9A3Jz7I_vm5gPLwZEhRprEu6FjKacJw4I_LO7twCd8dHOeFp_fvf109qE8v3j_8ezNeWmVVnMJWja65bbe0YIApOqxwVYJ1LprAGUPXatalJ1CgBpBAO9Q13qnGlFLgdVp8Xr1nXI3YG9xebw3U3QDxKMZwZm_O8EdzH68MlrKpm01GTy7MYjj14xpNoNLy-og4JiTkZVumla325rQp_-gl2OOtDOiFK-kkroWRMmVsnFMKeLudhjBzZIYsybGUGLMdWLMInry5zNuJb8iQkC1AolaYY_x97__Y_sT4nTUPQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Bilet, Lena</creator><creator>Phielix, Esther</creator><creator>van de Weijer, Tineke</creator><creator>Gemmink, Anne</creator><creator>Bosma, Madeleen</creator><creator>Moonen-Kornips, Esther</creator><creator>Jorgensen, Johanna A.</creator><creator>Schaart, Gert</creator><creator>Zhang, Dongyan</creator><creator>Meijer, Kenneth</creator><creator>Hopman, Maria</creator><creator>Hesselink, Matthijs K. C.</creator><creator>Ouwens, D. Margriet</creator><creator>Shulman, Gerald I.</creator><creator>Schrauwen-Hinderling, Vera B.</creator><creator>Schrauwen, Patrick</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200601</creationdate><title>One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension</title><author>Bilet, Lena ; Phielix, Esther ; van de Weijer, Tineke ; Gemmink, Anne ; Bosma, Madeleen ; Moonen-Kornips, Esther ; Jorgensen, Johanna A. ; Schaart, Gert ; Zhang, Dongyan ; Meijer, Kenneth ; Hopman, Maria ; Hesselink, Matthijs K. C. ; Ouwens, D. Margriet ; Shulman, Gerald I. ; Schrauwen-Hinderling, Vera B. ; Schrauwen, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a728790c5f186aa24de8e941e77b8ae2dab949e2b4eaa5ea1a0be757f481521e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Human Physiology</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Leg</topic><topic>Lipids</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane proteins</topic><topic>Metabolic Diseases</topic><topic>Metabolic disorders</topic><topic>Mitochondria</topic><topic>Oxidation</topic><topic>Palmitic acid</topic><topic>Phosphocreatine</topic><topic>Protein kinase C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilet, Lena</creatorcontrib><creatorcontrib>Phielix, Esther</creatorcontrib><creatorcontrib>van de Weijer, Tineke</creatorcontrib><creatorcontrib>Gemmink, Anne</creatorcontrib><creatorcontrib>Bosma, Madeleen</creatorcontrib><creatorcontrib>Moonen-Kornips, Esther</creatorcontrib><creatorcontrib>Jorgensen, Johanna A.</creatorcontrib><creatorcontrib>Schaart, Gert</creatorcontrib><creatorcontrib>Zhang, Dongyan</creatorcontrib><creatorcontrib>Meijer, Kenneth</creatorcontrib><creatorcontrib>Hopman, Maria</creatorcontrib><creatorcontrib>Hesselink, Matthijs K. C.</creatorcontrib><creatorcontrib>Ouwens, D. Margriet</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><creatorcontrib>Schrauwen-Hinderling, Vera B.</creatorcontrib><creatorcontrib>Schrauwen, Patrick</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilet, Lena</au><au>Phielix, Esther</au><au>van de Weijer, Tineke</au><au>Gemmink, Anne</au><au>Bosma, Madeleen</au><au>Moonen-Kornips, Esther</au><au>Jorgensen, Johanna A.</au><au>Schaart, Gert</au><au>Zhang, Dongyan</au><au>Meijer, Kenneth</au><au>Hopman, Maria</au><au>Hesselink, Matthijs K. C.</au><au>Ouwens, D. Margriet</au><au>Shulman, Gerald I.</au><au>Schrauwen-Hinderling, Vera B.</au><au>Schrauwen, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>63</volume><issue>6</issue><spage>1211</spage><epage>1222</epage><pages>1211-1222</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. Methods Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m 2 ) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. Results In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14 CO 2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [ 14 C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. Conclusions/interpretation Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. Trial registration ClinicalTrial.gov NCT01576250. Funding PS was supported by a ‘VICI’ Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32185462</pmid><doi>10.1007/s00125-020-05128-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2020-06, Vol.63 (6), p.1211-1222
issn 0012-186X
1432-0428
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228997
source SpringerLink Journals - AutoHoldings
subjects Diabetes
Diabetes mellitus (non-insulin dependent)
Human Physiology
Insulin
Insulin resistance
Internal Medicine
Kinases
Leg
Lipids
Medicine
Medicine & Public Health
Membrane proteins
Metabolic Diseases
Metabolic disorders
Mitochondria
Oxidation
Palmitic acid
Phosphocreatine
Protein kinase C
title One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-leg%20inactivity%20induces%20a%20reduction%20in%20mitochondrial%20oxidative%20capacity,%20intramyocellular%20lipid%20accumulation%20and%20reduced%20insulin%20signalling%20upon%20lipid%20infusion:%20a%20human%20study%20with%20unilateral%20limb%20suspension&rft.jtitle=Diabetologia&rft.au=Bilet,%20Lena&rft.date=2020-06-01&rft.volume=63&rft.issue=6&rft.spage=1211&rft.epage=1222&rft.pages=1211-1222&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-020-05128-1&rft_dat=%3Cproquest_pubme%3E2403242751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403242751&rft_id=info:pmid/32185462&rfr_iscdi=true