Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges

Additive manufacturing (AM) is considered the latest technology that creates breakthrough innovations and addresses complex medical problems. This is clearly demonstrated by the promising results obtained in regenerative medicine, diagnosis, implants, artificial tissues and organs. This paper provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymers and the environment 2020, Vol.28 (5), p.1345-1367
Hauptverfasser: Ghilan, Alina, Chiriac, Aurica P., Nita, Loredana E., Rusu, Alina G., Neamtu, Iordana, Chiriac, Vlad Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1367
container_issue 5
container_start_page 1345
container_title Journal of polymers and the environment
container_volume 28
creator Ghilan, Alina
Chiriac, Aurica P.
Nita, Loredana E.
Rusu, Alina G.
Neamtu, Iordana
Chiriac, Vlad Mihai
description Additive manufacturing (AM) is considered the latest technology that creates breakthrough innovations and addresses complex medical problems. This is clearly demonstrated by the promising results obtained in regenerative medicine, diagnosis, implants, artificial tissues and organs. This paper provides a basic understanding of the fundamentals of 3D/4D printing along with bioprinting processes. We are briefly discussing about the main printing systems including stereolithography, inkjet 3D printing, extrusion, laser-assisted printing, selective laser melting and Poly-Jet printing. The basic requirements for the selection of successful inks based on polymers, polymer blends, and composites are described. Furthermore, the on-going transition from 3D to 4D printing is highlighted with emphasis on the newest applications in the medical area. Also, a glimpse into the future possibilities and benefits provided by machine learning in the additive manufacturing field is emphasized. Machine learning can improve printing efficiency by using generative design and testing in the pre-fabrication stage. Finally, important limitations and prospects are identified. Within the next few years, AM is set to become an important component in patient-specific medical technologies. Graphic Abstract
doi_str_mv 10.1007/s10924-020-01722-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7224028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387142842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-c11e7d5820dcf5902701d2c7f764ac22deda90492da14f3306198bc880812a0a3</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS1ERdPCH-CAVuLCZdvx2Lv2ckCClLSVIhWhcrZc25u62tjB3kXl3-OQ0EIPnDzSfPP8Zh4hrymcUABxmil0yGtAqIEKxPr-GZnRRmAtO9o939ZtW2PD2SE5yvkOALoy-IIcMuSsoW0zI1-vkws2Vz5U7Kz6knwYfViVIhqXs8tVH1P1yce1s97ooVp4N9j31dVmE9M4BT_6wuhgq_mtHgYXVi6_JAe9HrJ7tX-PybfF5-v5Rb28Or-cf1zWpmFirA2lTthGIljTNx2gAGrRiF60XBtE66zugHdoNeU9Y9DSTt4YKUFS1KDZMfmw091MN8WecWFMelCb5Nc6_VRRe_VvJ_hbtYo_VDkVB5RF4N1eIMXvk8ujWvts3DDo4OKUVaEaxoq1Lfr2CXoXpxTKegqZFJSj5Fgo3FEmxZyT6x_MUFDbyNQuMlUiU78jU_dl6M3fazyM_MmoAGwH5NIqB06Pf_9H9hdo6qGi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387142842</pqid></control><display><type>article</type><title>Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges</title><source>SpringerNature Journals</source><creator>Ghilan, Alina ; Chiriac, Aurica P. ; Nita, Loredana E. ; Rusu, Alina G. ; Neamtu, Iordana ; Chiriac, Vlad Mihai</creator><creatorcontrib>Ghilan, Alina ; Chiriac, Aurica P. ; Nita, Loredana E. ; Rusu, Alina G. ; Neamtu, Iordana ; Chiriac, Vlad Mihai</creatorcontrib><description>Additive manufacturing (AM) is considered the latest technology that creates breakthrough innovations and addresses complex medical problems. This is clearly demonstrated by the promising results obtained in regenerative medicine, diagnosis, implants, artificial tissues and organs. This paper provides a basic understanding of the fundamentals of 3D/4D printing along with bioprinting processes. We are briefly discussing about the main printing systems including stereolithography, inkjet 3D printing, extrusion, laser-assisted printing, selective laser melting and Poly-Jet printing. The basic requirements for the selection of successful inks based on polymers, polymer blends, and composites are described. Furthermore, the on-going transition from 3D to 4D printing is highlighted with emphasis on the newest applications in the medical area. Also, a glimpse into the future possibilities and benefits provided by machine learning in the additive manufacturing field is emphasized. Machine learning can improve printing efficiency by using generative design and testing in the pre-fabrication stage. Finally, important limitations and prospects are identified. Within the next few years, AM is set to become an important component in patient-specific medical technologies. Graphic Abstract</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-020-01722-x</identifier><identifier>PMID: 32435165</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3-D printers ; Additive manufacturing ; Artificial tissues ; Bioengineering ; Chemistry ; Chemistry and Materials Science ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Extrusion ; Fabrication ; Industrial Chemistry/Chemical Engineering ; Inkjet printing ; Inks ; Jet printing ; Laser beam melting ; Learning algorithms ; Lithography ; Machine learning ; Materials Science ; Medical technology ; Organs ; Polymer blends ; Polymer matrix composites ; Polymer Sciences ; Polymers ; Printing ; Rapid prototyping ; Regeneration ; Review ; Surgical implants ; Three dimensional printing ; Tissue engineering</subject><ispartof>Journal of polymers and the environment, 2020, Vol.28 (5), p.1345-1367</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-c11e7d5820dcf5902701d2c7f764ac22deda90492da14f3306198bc880812a0a3</citedby><cites>FETCH-LOGICAL-c537t-c11e7d5820dcf5902701d2c7f764ac22deda90492da14f3306198bc880812a0a3</cites><orcidid>0000-0002-8452-1780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-020-01722-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-020-01722-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32435165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghilan, Alina</creatorcontrib><creatorcontrib>Chiriac, Aurica P.</creatorcontrib><creatorcontrib>Nita, Loredana E.</creatorcontrib><creatorcontrib>Rusu, Alina G.</creatorcontrib><creatorcontrib>Neamtu, Iordana</creatorcontrib><creatorcontrib>Chiriac, Vlad Mihai</creatorcontrib><title>Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><addtitle>J Polym Environ</addtitle><description>Additive manufacturing (AM) is considered the latest technology that creates breakthrough innovations and addresses complex medical problems. This is clearly demonstrated by the promising results obtained in regenerative medicine, diagnosis, implants, artificial tissues and organs. This paper provides a basic understanding of the fundamentals of 3D/4D printing along with bioprinting processes. We are briefly discussing about the main printing systems including stereolithography, inkjet 3D printing, extrusion, laser-assisted printing, selective laser melting and Poly-Jet printing. The basic requirements for the selection of successful inks based on polymers, polymer blends, and composites are described. Furthermore, the on-going transition from 3D to 4D printing is highlighted with emphasis on the newest applications in the medical area. Also, a glimpse into the future possibilities and benefits provided by machine learning in the additive manufacturing field is emphasized. Machine learning can improve printing efficiency by using generative design and testing in the pre-fabrication stage. Finally, important limitations and prospects are identified. Within the next few years, AM is set to become an important component in patient-specific medical technologies. Graphic Abstract</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Artificial tissues</subject><subject>Bioengineering</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Extrusion</subject><subject>Fabrication</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inkjet printing</subject><subject>Inks</subject><subject>Jet printing</subject><subject>Laser beam melting</subject><subject>Learning algorithms</subject><subject>Lithography</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Medical technology</subject><subject>Organs</subject><subject>Polymer blends</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Printing</subject><subject>Rapid prototyping</subject><subject>Regeneration</subject><subject>Review</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFvEzEQhS1ERdPCH-CAVuLCZdvx2Lv2ckCClLSVIhWhcrZc25u62tjB3kXl3-OQ0EIPnDzSfPP8Zh4hrymcUABxmil0yGtAqIEKxPr-GZnRRmAtO9o939ZtW2PD2SE5yvkOALoy-IIcMuSsoW0zI1-vkws2Vz5U7Kz6knwYfViVIhqXs8tVH1P1yce1s97ooVp4N9j31dVmE9M4BT_6wuhgq_mtHgYXVi6_JAe9HrJ7tX-PybfF5-v5Rb28Or-cf1zWpmFirA2lTthGIljTNx2gAGrRiF60XBtE66zugHdoNeU9Y9DSTt4YKUFS1KDZMfmw091MN8WecWFMelCb5Nc6_VRRe_VvJ_hbtYo_VDkVB5RF4N1eIMXvk8ujWvts3DDo4OKUVaEaxoq1Lfr2CXoXpxTKegqZFJSj5Fgo3FEmxZyT6x_MUFDbyNQuMlUiU78jU_dl6M3fazyM_MmoAGwH5NIqB06Pf_9H9hdo6qGi</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ghilan, Alina</creator><creator>Chiriac, Aurica P.</creator><creator>Nita, Loredana E.</creator><creator>Rusu, Alina G.</creator><creator>Neamtu, Iordana</creator><creator>Chiriac, Vlad Mihai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8452-1780</orcidid></search><sort><creationdate>2020</creationdate><title>Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges</title><author>Ghilan, Alina ; Chiriac, Aurica P. ; Nita, Loredana E. ; Rusu, Alina G. ; Neamtu, Iordana ; Chiriac, Vlad Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-c11e7d5820dcf5902701d2c7f764ac22deda90492da14f3306198bc880812a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Artificial tissues</topic><topic>Bioengineering</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Extrusion</topic><topic>Fabrication</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inkjet printing</topic><topic>Inks</topic><topic>Jet printing</topic><topic>Laser beam melting</topic><topic>Learning algorithms</topic><topic>Lithography</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Medical technology</topic><topic>Organs</topic><topic>Polymer blends</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Printing</topic><topic>Rapid prototyping</topic><topic>Regeneration</topic><topic>Review</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghilan, Alina</creatorcontrib><creatorcontrib>Chiriac, Aurica P.</creatorcontrib><creatorcontrib>Nita, Loredana E.</creatorcontrib><creatorcontrib>Rusu, Alina G.</creatorcontrib><creatorcontrib>Neamtu, Iordana</creatorcontrib><creatorcontrib>Chiriac, Vlad Mihai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghilan, Alina</au><au>Chiriac, Aurica P.</au><au>Nita, Loredana E.</au><au>Rusu, Alina G.</au><au>Neamtu, Iordana</au><au>Chiriac, Vlad Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><addtitle>J Polym Environ</addtitle><date>2020</date><risdate>2020</risdate><volume>28</volume><issue>5</issue><spage>1345</spage><epage>1367</epage><pages>1345-1367</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>Additive manufacturing (AM) is considered the latest technology that creates breakthrough innovations and addresses complex medical problems. This is clearly demonstrated by the promising results obtained in regenerative medicine, diagnosis, implants, artificial tissues and organs. This paper provides a basic understanding of the fundamentals of 3D/4D printing along with bioprinting processes. We are briefly discussing about the main printing systems including stereolithography, inkjet 3D printing, extrusion, laser-assisted printing, selective laser melting and Poly-Jet printing. The basic requirements for the selection of successful inks based on polymers, polymer blends, and composites are described. Furthermore, the on-going transition from 3D to 4D printing is highlighted with emphasis on the newest applications in the medical area. Also, a glimpse into the future possibilities and benefits provided by machine learning in the additive manufacturing field is emphasized. Machine learning can improve printing efficiency by using generative design and testing in the pre-fabrication stage. Finally, important limitations and prospects are identified. Within the next few years, AM is set to become an important component in patient-specific medical technologies. Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32435165</pmid><doi>10.1007/s10924-020-01722-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8452-1780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1566-2543
ispartof Journal of polymers and the environment, 2020, Vol.28 (5), p.1345-1367
issn 1566-2543
1572-8919
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7224028
source SpringerNature Journals
subjects 3-D printers
Additive manufacturing
Artificial tissues
Bioengineering
Chemistry
Chemistry and Materials Science
Environmental Chemistry
Environmental Engineering/Biotechnology
Extrusion
Fabrication
Industrial Chemistry/Chemical Engineering
Inkjet printing
Inks
Jet printing
Laser beam melting
Learning algorithms
Lithography
Machine learning
Materials Science
Medical technology
Organs
Polymer blends
Polymer matrix composites
Polymer Sciences
Polymers
Printing
Rapid prototyping
Regeneration
Review
Surgical implants
Three dimensional printing
Tissue engineering
title Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trends%20in%203D%20Printing%20Processes%20for%20Biomedical%20Field:%20Opportunities%20and%20Challenges&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Ghilan,%20Alina&rft.date=2020&rft.volume=28&rft.issue=5&rft.spage=1345&rft.epage=1367&rft.pages=1345-1367&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-020-01722-x&rft_dat=%3Cproquest_pubme%3E2387142842%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387142842&rft_id=info:pmid/32435165&rfr_iscdi=true