Critical Stretching of Mean-Field Regimes in Spatial Networks

We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation thresh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-08, Vol.123 (8), p.088301-088301, Article 088301
Hauptverfasser: Bonamassa, Ivan, Gross, Bnaya, Danziger, Michael M, Havlin, Shlomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 088301
container_issue 8
container_start_page 088301
container_title Physical review letters
container_volume 123
creator Bonamassa, Ivan
Gross, Bnaya
Danziger, Michael M
Havlin, Shlomo
description We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d
doi_str_mv 10.1103/PhysRevLett.123.088301
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7219511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286945484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</originalsourceid><addsrcrecordid>eNpdkclOwzAQhi0EgrK8AorEhUvKjJ3FPoCEKjapLGI5W7bjtIY0KbZbxNsTVEDAaQ7z_b9m9BGyjzBEBHZ0N30P93Y5tjEOkbIhcM4A18gAoRRpiZitkwEAw1QAlFtkO4RnAEBa8E2yxTATSJENyPHIu-iMapKH6G00U9dOkq5Orq1q03Nnmyq5txM3syFxbfIwV9H17I2Nb51_Cbtko1ZNsHtfc4c8nZ89ji7T8e3F1eh0nJpM5DHltNJY1DVFXYiKQq61Rq1LbjSK0iCWTLG6KvKMWSOUoDyvK0V5pSnUAIrtkJNV73yhZ7Yyto1eNXLu3Uz5d9kpJ_9uWjeVk24pS4oiR-wLDr8KfPe6sCHKmQvGNo1qbbcIklJeiCzPeNajB__Q527h2_69T6qEHEHwnipWlPFdCN7WP8cgyE9D8pch2RuSK0N9cP_3Kz-xbyXsA5IFj6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287051098</pqid></control><display><type>article</type><title>Critical Stretching of Mean-Field Regimes in Spatial Networks</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bonamassa, Ivan ; Gross, Bnaya ; Danziger, Michael M ; Havlin, Shlomo</creator><creatorcontrib>Bonamassa, Ivan ; Gross, Bnaya ; Danziger, Michael M ; Havlin, Shlomo</creatorcontrib><description>We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d&lt;6, before crossing over to the spatial one. We demonstrate the universal behavior of the spatiotemporal scales characterizing this critical stretching phenomenon of mean-field regimes in percolation and in dynamical processes on d=2 networks, and we discuss its general implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.088301</identifier><identifier>PMID: 31491213</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Epidemics ; Letters ; Percolation ; Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics ; Stretching</subject><ispartof>Physical review letters, 2019-08, Vol.123 (8), p.088301-088301, Article 088301</ispartof><rights>Copyright American Physical Society Aug 23, 2019</rights><rights>2019 American Physical Society 2019 American Physical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</citedby><cites>FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonamassa, Ivan</creatorcontrib><creatorcontrib>Gross, Bnaya</creatorcontrib><creatorcontrib>Danziger, Michael M</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><title>Critical Stretching of Mean-Field Regimes in Spatial Networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d&lt;6, before crossing over to the spatial one. We demonstrate the universal behavior of the spatiotemporal scales characterizing this critical stretching phenomenon of mean-field regimes in percolation and in dynamical processes on d=2 networks, and we discuss its general implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.</description><subject>Epidemics</subject><subject>Letters</subject><subject>Percolation</subject><subject>Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics</subject><subject>Stretching</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkclOwzAQhi0EgrK8AorEhUvKjJ3FPoCEKjapLGI5W7bjtIY0KbZbxNsTVEDAaQ7z_b9m9BGyjzBEBHZ0N30P93Y5tjEOkbIhcM4A18gAoRRpiZitkwEAw1QAlFtkO4RnAEBa8E2yxTATSJENyPHIu-iMapKH6G00U9dOkq5Orq1q03Nnmyq5txM3syFxbfIwV9H17I2Nb51_Cbtko1ZNsHtfc4c8nZ89ji7T8e3F1eh0nJpM5DHltNJY1DVFXYiKQq61Rq1LbjSK0iCWTLG6KvKMWSOUoDyvK0V5pSnUAIrtkJNV73yhZ7Yyto1eNXLu3Uz5d9kpJ_9uWjeVk24pS4oiR-wLDr8KfPe6sCHKmQvGNo1qbbcIklJeiCzPeNajB__Q527h2_69T6qEHEHwnipWlPFdCN7WP8cgyE9D8pch2RuSK0N9cP_3Kz-xbyXsA5IFj6c</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Bonamassa, Ivan</creator><creator>Gross, Bnaya</creator><creator>Danziger, Michael M</creator><creator>Havlin, Shlomo</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190823</creationdate><title>Critical Stretching of Mean-Field Regimes in Spatial Networks</title><author>Bonamassa, Ivan ; Gross, Bnaya ; Danziger, Michael M ; Havlin, Shlomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Epidemics</topic><topic>Letters</topic><topic>Percolation</topic><topic>Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonamassa, Ivan</creatorcontrib><creatorcontrib>Gross, Bnaya</creatorcontrib><creatorcontrib>Danziger, Michael M</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonamassa, Ivan</au><au>Gross, Bnaya</au><au>Danziger, Michael M</au><au>Havlin, Shlomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Stretching of Mean-Field Regimes in Spatial Networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>123</volume><issue>8</issue><spage>088301</spage><epage>088301</epage><pages>088301-088301</pages><artnum>088301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d&lt;6, before crossing over to the spatial one. We demonstrate the universal behavior of the spatiotemporal scales characterizing this critical stretching phenomenon of mean-field regimes in percolation and in dynamical processes on d=2 networks, and we discuss its general implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31491213</pmid><doi>10.1103/PhysRevLett.123.088301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-08, Vol.123 (8), p.088301-088301, Article 088301
issn 0031-9007
1079-7114
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7219511
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Epidemics
Letters
Percolation
Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics
Stretching
title Critical Stretching of Mean-Field Regimes in Spatial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Stretching%20of%20Mean-Field%20Regimes%20in%20Spatial%20Networks&rft.jtitle=Physical%20review%20letters&rft.au=Bonamassa,%20Ivan&rft.date=2019-08-23&rft.volume=123&rft.issue=8&rft.spage=088301&rft.epage=088301&rft.pages=088301-088301&rft.artnum=088301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.088301&rft_dat=%3Cproquest_pubme%3E2286945484%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287051098&rft_id=info:pmid/31491213&rfr_iscdi=true