Critical Stretching of Mean-Field Regimes in Spatial Networks
We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation thresh...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-08, Vol.123 (8), p.088301-088301, Article 088301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 088301 |
---|---|
container_issue | 8 |
container_start_page | 088301 |
container_title | Physical review letters |
container_volume | 123 |
creator | Bonamassa, Ivan Gross, Bnaya Danziger, Michael M Havlin, Shlomo |
description | We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d |
doi_str_mv | 10.1103/PhysRevLett.123.088301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7219511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286945484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</originalsourceid><addsrcrecordid>eNpdkclOwzAQhi0EgrK8AorEhUvKjJ3FPoCEKjapLGI5W7bjtIY0KbZbxNsTVEDAaQ7z_b9m9BGyjzBEBHZ0N30P93Y5tjEOkbIhcM4A18gAoRRpiZitkwEAw1QAlFtkO4RnAEBa8E2yxTATSJENyPHIu-iMapKH6G00U9dOkq5Orq1q03Nnmyq5txM3syFxbfIwV9H17I2Nb51_Cbtko1ZNsHtfc4c8nZ89ji7T8e3F1eh0nJpM5DHltNJY1DVFXYiKQq61Rq1LbjSK0iCWTLG6KvKMWSOUoDyvK0V5pSnUAIrtkJNV73yhZ7Yyto1eNXLu3Uz5d9kpJ_9uWjeVk24pS4oiR-wLDr8KfPe6sCHKmQvGNo1qbbcIklJeiCzPeNajB__Q527h2_69T6qEHEHwnipWlPFdCN7WP8cgyE9D8pch2RuSK0N9cP_3Kz-xbyXsA5IFj6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287051098</pqid></control><display><type>article</type><title>Critical Stretching of Mean-Field Regimes in Spatial Networks</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bonamassa, Ivan ; Gross, Bnaya ; Danziger, Michael M ; Havlin, Shlomo</creator><creatorcontrib>Bonamassa, Ivan ; Gross, Bnaya ; Danziger, Michael M ; Havlin, Shlomo</creatorcontrib><description>We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d<6, before crossing over to the spatial one. We demonstrate the universal behavior of the spatiotemporal scales characterizing this critical stretching phenomenon of mean-field regimes in percolation and in dynamical processes on d=2 networks, and we discuss its general implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.088301</identifier><identifier>PMID: 31491213</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Epidemics ; Letters ; Percolation ; Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics ; Stretching</subject><ispartof>Physical review letters, 2019-08, Vol.123 (8), p.088301-088301, Article 088301</ispartof><rights>Copyright American Physical Society Aug 23, 2019</rights><rights>2019 American Physical Society 2019 American Physical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</citedby><cites>FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonamassa, Ivan</creatorcontrib><creatorcontrib>Gross, Bnaya</creatorcontrib><creatorcontrib>Danziger, Michael M</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><title>Critical Stretching of Mean-Field Regimes in Spatial Networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d<6, before crossing over to the spatial one. We demonstrate the universal behavior of the spatiotemporal scales characterizing this critical stretching phenomenon of mean-field regimes in percolation and in dynamical processes on d=2 networks, and we discuss its general implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.</description><subject>Epidemics</subject><subject>Letters</subject><subject>Percolation</subject><subject>Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics</subject><subject>Stretching</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkclOwzAQhi0EgrK8AorEhUvKjJ3FPoCEKjapLGI5W7bjtIY0KbZbxNsTVEDAaQ7z_b9m9BGyjzBEBHZ0N30P93Y5tjEOkbIhcM4A18gAoRRpiZitkwEAw1QAlFtkO4RnAEBa8E2yxTATSJENyPHIu-iMapKH6G00U9dOkq5Orq1q03Nnmyq5txM3syFxbfIwV9H17I2Nb51_Cbtko1ZNsHtfc4c8nZ89ji7T8e3F1eh0nJpM5DHltNJY1DVFXYiKQq61Rq1LbjSK0iCWTLG6KvKMWSOUoDyvK0V5pSnUAIrtkJNV73yhZ7Yyto1eNXLu3Uz5d9kpJ_9uWjeVk24pS4oiR-wLDr8KfPe6sCHKmQvGNo1qbbcIklJeiCzPeNajB__Q527h2_69T6qEHEHwnipWlPFdCN7WP8cgyE9D8pch2RuSK0N9cP_3Kz-xbyXsA5IFj6c</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Bonamassa, Ivan</creator><creator>Gross, Bnaya</creator><creator>Danziger, Michael M</creator><creator>Havlin, Shlomo</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190823</creationdate><title>Critical Stretching of Mean-Field Regimes in Spatial Networks</title><author>Bonamassa, Ivan ; Gross, Bnaya ; Danziger, Michael M ; Havlin, Shlomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-82db16ff21b69d205bbb1bb78cb197c1173a3fd6543ec9a9285fda28db20f00a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Epidemics</topic><topic>Letters</topic><topic>Percolation</topic><topic>Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonamassa, Ivan</creatorcontrib><creatorcontrib>Gross, Bnaya</creatorcontrib><creatorcontrib>Danziger, Michael M</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonamassa, Ivan</au><au>Gross, Bnaya</au><au>Danziger, Michael M</au><au>Havlin, Shlomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Stretching of Mean-Field Regimes in Spatial Networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>123</volume><issue>8</issue><spage>088301</spage><epage>088301</epage><pages>088301-088301</pages><artnum>088301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d<6, before crossing over to the spatial one. We demonstrate the universal behavior of the spatiotemporal scales characterizing this critical stretching phenomenon of mean-field regimes in percolation and in dynamical processes on d=2 networks, and we discuss its general implications to real-world phenomena, such as neural activation, traffic flows or epidemic spreading.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31491213</pmid><doi>10.1103/PhysRevLett.123.088301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-08, Vol.123 (8), p.088301-088301, Article 088301 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7219511 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Epidemics Letters Percolation Polymer, Soft Matter, Biological, Climate, and Interdisciplinary Physics Stretching |
title | Critical Stretching of Mean-Field Regimes in Spatial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Stretching%20of%20Mean-Field%20Regimes%20in%20Spatial%20Networks&rft.jtitle=Physical%20review%20letters&rft.au=Bonamassa,%20Ivan&rft.date=2019-08-23&rft.volume=123&rft.issue=8&rft.spage=088301&rft.epage=088301&rft.pages=088301-088301&rft.artnum=088301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.088301&rft_dat=%3Cproquest_pubme%3E2286945484%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287051098&rft_id=info:pmid/31491213&rfr_iscdi=true |