Critical Stretching of Mean-Field Regimes in Spatial Networks
We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation thresh...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-08, Vol.123 (8), p.088301-088301, Article 088301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.088301 |