Critical Stretching of Mean-Field Regimes in Spatial Networks

We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation thresh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-08, Vol.123 (8), p.088301-088301, Article 088301
Hauptverfasser: Bonamassa, Ivan, Gross, Bnaya, Danziger, Michael M, Havlin, Shlomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a spatial network model with exponentially distributed link lengths on an underlying grid of points, undergoing a structural crossover from a random, Erdős-Rényi graph, to a d-dimensional lattice at the characteristic interaction range ζ. We find that, whilst far from the percolation threshold the random part of the giant component scales linearly with ζ, close to criticality it extends in space until the universal length scale ζ^{6/(6-d)}, for d
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.088301