Stokes flow around an obstacle in viscous two-dimensional electron liquid

The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-05, Vol.10 (1), p.7860-7860, Article 7860
Hauptverfasser: Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D., Bakarov, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7860
container_issue 1
container_start_page 7860
container_title Scientific reports
container_volume 10
creator Gusev, G. M.
Jaroshevich, A. S.
Levin, A. D.
Kvon, Z. D.
Bakarov, A. K.
description The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.
doi_str_mv 10.1038/s41598-020-64807-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401760150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</originalsourceid><addsrcrecordid>eNp9kUtPAyEUhYnRWFP7B1wYEjduRoGBYWZjYoyPJiYu1DVhgKkohQozGv-91Gp9LGQD4X733HtyANjD6Aijsj5OFLOmLhBBRUVrxItqA-wQRFlBSkI2f7xHYJLSI8qHkYbiZhuMSlI2Ned0B0xv-_BkEuxceIUyhsFrKD0MbeqlcgZaD19sUmFIsH8NhbZz45MNXjponFF9DB46-zxYvQu2OumSmXzeY3B_cX53dlVc31xOz06vC0U57QtZU420rjvOsWlV09Y1rXT-KLGUulOMaYnz1kx3XHLcdm2LuaZSka5lmKhyDE5WuouhnRutjO-jdGIR7VzGNxGkFb8r3j6IWXgRnGDeVCgLHH4KxPA8mNSLeXZonJPeZJ-CUERo3qBkGT34gz6GIWbzHxTmFcJsKUhWlIohpWi69TIYiWVYYhWWyGGJj7BElZv2f9pYt3xFk4FyBaRc8jMTv2f_I_sO-OeheA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401760150</pqid></control><display><type>article</type><title>Stokes flow around an obstacle in viscous two-dimensional electron liquid</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gusev, G. M. ; Jaroshevich, A. S. ; Levin, A. D. ; Kvon, Z. D. ; Bakarov, A. K.</creator><creatorcontrib>Gusev, G. M. ; Jaroshevich, A. S. ; Levin, A. D. ; Kvon, Z. D. ; Bakarov, A. K.</creatorcontrib><description>The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64807-6</identifier><identifier>PMID: 32398774</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/766/189 ; Boundary conditions ; Fluid mechanics ; Geometry ; Graphene ; Humanities and Social Sciences ; Magnetic fields ; Molecular beam epitaxy ; multidisciplinary ; Science ; Science (multidisciplinary) ; Velocity ; Viscosity</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.7860-7860, Article 7860</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</citedby><cites>FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217960/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217960/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32398774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gusev, G. M.</creatorcontrib><creatorcontrib>Jaroshevich, A. S.</creatorcontrib><creatorcontrib>Levin, A. D.</creatorcontrib><creatorcontrib>Kvon, Z. D.</creatorcontrib><creatorcontrib>Bakarov, A. K.</creatorcontrib><title>Stokes flow around an obstacle in viscous two-dimensional electron liquid</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.</description><subject>639/766/119/995</subject><subject>639/766/189</subject><subject>Boundary conditions</subject><subject>Fluid mechanics</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Molecular beam epitaxy</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPAyEUhYnRWFP7B1wYEjduRoGBYWZjYoyPJiYu1DVhgKkohQozGv-91Gp9LGQD4X733HtyANjD6Aijsj5OFLOmLhBBRUVrxItqA-wQRFlBSkI2f7xHYJLSI8qHkYbiZhuMSlI2Ned0B0xv-_BkEuxceIUyhsFrKD0MbeqlcgZaD19sUmFIsH8NhbZz45MNXjponFF9DB46-zxYvQu2OumSmXzeY3B_cX53dlVc31xOz06vC0U57QtZU420rjvOsWlV09Y1rXT-KLGUulOMaYnz1kx3XHLcdm2LuaZSka5lmKhyDE5WuouhnRutjO-jdGIR7VzGNxGkFb8r3j6IWXgRnGDeVCgLHH4KxPA8mNSLeXZonJPeZJ-CUERo3qBkGT34gz6GIWbzHxTmFcJsKUhWlIohpWi69TIYiWVYYhWWyGGJj7BElZv2f9pYt3xFk4FyBaRc8jMTv2f_I_sO-OeheA</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Gusev, G. M.</creator><creator>Jaroshevich, A. S.</creator><creator>Levin, A. D.</creator><creator>Kvon, Z. D.</creator><creator>Bakarov, A. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200512</creationdate><title>Stokes flow around an obstacle in viscous two-dimensional electron liquid</title><author>Gusev, G. M. ; Jaroshevich, A. S. ; Levin, A. D. ; Kvon, Z. D. ; Bakarov, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/995</topic><topic>639/766/189</topic><topic>Boundary conditions</topic><topic>Fluid mechanics</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Molecular beam epitaxy</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusev, G. M.</creatorcontrib><creatorcontrib>Jaroshevich, A. S.</creatorcontrib><creatorcontrib>Levin, A. D.</creatorcontrib><creatorcontrib>Kvon, Z. D.</creatorcontrib><creatorcontrib>Bakarov, A. K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusev, G. M.</au><au>Jaroshevich, A. S.</au><au>Levin, A. D.</au><au>Kvon, Z. D.</au><au>Bakarov, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes flow around an obstacle in viscous two-dimensional electron liquid</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>7860</spage><epage>7860</epage><pages>7860-7860</pages><artnum>7860</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32398774</pmid><doi>10.1038/s41598-020-64807-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-05, Vol.10 (1), p.7860-7860, Article 7860
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217960
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/766/119/995
639/766/189
Boundary conditions
Fluid mechanics
Geometry
Graphene
Humanities and Social Sciences
Magnetic fields
Molecular beam epitaxy
multidisciplinary
Science
Science (multidisciplinary)
Velocity
Viscosity
title Stokes flow around an obstacle in viscous two-dimensional electron liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes%20flow%20around%20an%20obstacle%20in%20viscous%20two-dimensional%20electron%20liquid&rft.jtitle=Scientific%20reports&rft.au=Gusev,%20G.%20M.&rft.date=2020-05-12&rft.volume=10&rft.issue=1&rft.spage=7860&rft.epage=7860&rft.pages=7860-7860&rft.artnum=7860&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64807-6&rft_dat=%3Cproquest_pubme%3E2401760150%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401760150&rft_id=info:pmid/32398774&rfr_iscdi=true