Stokes flow around an obstacle in viscous two-dimensional electron liquid
The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We st...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-05, Vol.10 (1), p.7860-7860, Article 7860 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7860 |
---|---|
container_issue | 1 |
container_start_page | 7860 |
container_title | Scientific reports |
container_volume | 10 |
creator | Gusev, G. M. Jaroshevich, A. S. Levin, A. D. Kvon, Z. D. Bakarov, A. K. |
description | The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions. |
doi_str_mv | 10.1038/s41598-020-64807-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401760150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</originalsourceid><addsrcrecordid>eNp9kUtPAyEUhYnRWFP7B1wYEjduRoGBYWZjYoyPJiYu1DVhgKkohQozGv-91Gp9LGQD4X733HtyANjD6Aijsj5OFLOmLhBBRUVrxItqA-wQRFlBSkI2f7xHYJLSI8qHkYbiZhuMSlI2Ned0B0xv-_BkEuxceIUyhsFrKD0MbeqlcgZaD19sUmFIsH8NhbZz45MNXjponFF9DB46-zxYvQu2OumSmXzeY3B_cX53dlVc31xOz06vC0U57QtZU420rjvOsWlV09Y1rXT-KLGUulOMaYnz1kx3XHLcdm2LuaZSka5lmKhyDE5WuouhnRutjO-jdGIR7VzGNxGkFb8r3j6IWXgRnGDeVCgLHH4KxPA8mNSLeXZonJPeZJ-CUERo3qBkGT34gz6GIWbzHxTmFcJsKUhWlIohpWi69TIYiWVYYhWWyGGJj7BElZv2f9pYt3xFk4FyBaRc8jMTv2f_I_sO-OeheA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401760150</pqid></control><display><type>article</type><title>Stokes flow around an obstacle in viscous two-dimensional electron liquid</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gusev, G. M. ; Jaroshevich, A. S. ; Levin, A. D. ; Kvon, Z. D. ; Bakarov, A. K.</creator><creatorcontrib>Gusev, G. M. ; Jaroshevich, A. S. ; Levin, A. D. ; Kvon, Z. D. ; Bakarov, A. K.</creatorcontrib><description>The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64807-6</identifier><identifier>PMID: 32398774</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/766/189 ; Boundary conditions ; Fluid mechanics ; Geometry ; Graphene ; Humanities and Social Sciences ; Magnetic fields ; Molecular beam epitaxy ; multidisciplinary ; Science ; Science (multidisciplinary) ; Velocity ; Viscosity</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.7860-7860, Article 7860</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</citedby><cites>FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217960/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217960/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32398774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gusev, G. M.</creatorcontrib><creatorcontrib>Jaroshevich, A. S.</creatorcontrib><creatorcontrib>Levin, A. D.</creatorcontrib><creatorcontrib>Kvon, Z. D.</creatorcontrib><creatorcontrib>Bakarov, A. K.</creatorcontrib><title>Stokes flow around an obstacle in viscous two-dimensional electron liquid</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.</description><subject>639/766/119/995</subject><subject>639/766/189</subject><subject>Boundary conditions</subject><subject>Fluid mechanics</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Molecular beam epitaxy</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPAyEUhYnRWFP7B1wYEjduRoGBYWZjYoyPJiYu1DVhgKkohQozGv-91Gp9LGQD4X733HtyANjD6Aijsj5OFLOmLhBBRUVrxItqA-wQRFlBSkI2f7xHYJLSI8qHkYbiZhuMSlI2Ned0B0xv-_BkEuxceIUyhsFrKD0MbeqlcgZaD19sUmFIsH8NhbZz45MNXjponFF9DB46-zxYvQu2OumSmXzeY3B_cX53dlVc31xOz06vC0U57QtZU420rjvOsWlV09Y1rXT-KLGUulOMaYnz1kx3XHLcdm2LuaZSka5lmKhyDE5WuouhnRutjO-jdGIR7VzGNxGkFb8r3j6IWXgRnGDeVCgLHH4KxPA8mNSLeXZonJPeZJ-CUERo3qBkGT34gz6GIWbzHxTmFcJsKUhWlIohpWi69TIYiWVYYhWWyGGJj7BElZv2f9pYt3xFk4FyBaRc8jMTv2f_I_sO-OeheA</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Gusev, G. M.</creator><creator>Jaroshevich, A. S.</creator><creator>Levin, A. D.</creator><creator>Kvon, Z. D.</creator><creator>Bakarov, A. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200512</creationdate><title>Stokes flow around an obstacle in viscous two-dimensional electron liquid</title><author>Gusev, G. M. ; Jaroshevich, A. S. ; Levin, A. D. ; Kvon, Z. D. ; Bakarov, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a84d0dd8f771ebc9b8846ddd831aadfc55da13225df7a71bfbb17d4ac2fb512c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/995</topic><topic>639/766/189</topic><topic>Boundary conditions</topic><topic>Fluid mechanics</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Molecular beam epitaxy</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusev, G. M.</creatorcontrib><creatorcontrib>Jaroshevich, A. S.</creatorcontrib><creatorcontrib>Levin, A. D.</creatorcontrib><creatorcontrib>Kvon, Z. D.</creatorcontrib><creatorcontrib>Bakarov, A. K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusev, G. M.</au><au>Jaroshevich, A. S.</au><au>Levin, A. D.</au><au>Kvon, Z. D.</au><au>Bakarov, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes flow around an obstacle in viscous two-dimensional electron liquid</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>7860</spage><epage>7860</epage><pages>7860-7860</pages><artnum>7860</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32398774</pmid><doi>10.1038/s41598-020-64807-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-05, Vol.10 (1), p.7860-7860, Article 7860 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217960 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/766/119/995 639/766/189 Boundary conditions Fluid mechanics Geometry Graphene Humanities and Social Sciences Magnetic fields Molecular beam epitaxy multidisciplinary Science Science (multidisciplinary) Velocity Viscosity |
title | Stokes flow around an obstacle in viscous two-dimensional electron liquid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes%20flow%20around%20an%20obstacle%20in%20viscous%20two-dimensional%20electron%20liquid&rft.jtitle=Scientific%20reports&rft.au=Gusev,%20G.%20M.&rft.date=2020-05-12&rft.volume=10&rft.issue=1&rft.spage=7860&rft.epage=7860&rft.pages=7860-7860&rft.artnum=7860&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64807-6&rft_dat=%3Cproquest_pubme%3E2401760150%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401760150&rft_id=info:pmid/32398774&rfr_iscdi=true |