Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation

The enantioselective intermolecular C2‐allylation of 3‐substituted indoles is reported for the first time. This directing group‐free approach relies on a chiral Ir‐(P, olefin) complex and Mg(ClO4)2 Lewis acid catalyst system to promote allylic substitution, providing the C2‐allylated products in typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-05, Vol.59 (19), p.7598-7604
Hauptverfasser: Rossi‐Ashton, James A., Clarke, Aimee K., Donald, James R., Zheng, Chao, Taylor, Richard J. K., Unsworth, William P., You, Shu‐Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7604
container_issue 19
container_start_page 7598
container_title Angewandte Chemie International Edition
container_volume 59
creator Rossi‐Ashton, James A.
Clarke, Aimee K.
Donald, James R.
Zheng, Chao
Taylor, Richard J. K.
Unsworth, William P.
You, Shu‐Li
description The enantioselective intermolecular C2‐allylation of 3‐substituted indoles is reported for the first time. This directing group‐free approach relies on a chiral Ir‐(P, olefin) complex and Mg(ClO4)2 Lewis acid catalyst system to promote allylic substitution, providing the C2‐allylated products in typically high yields (40–99 %) and enantioselectivities (83–99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation, rather than C3‐allylation followed by in situ migration. Steric congestion at the indole‐C3 position and improved π–π stacking interactions have been identified as major contributors to the C2‐selectivity. An enantioselective C2‐allylation of 3‐substituted indoles is reported, providing C2‐allylated products with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation with steric congestion at the indole‐C3 position and π–π stacking interactions identified as major contributors to the selectivity observed.
doi_str_mv 10.1002/anie.202001956
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363047107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5056-44cf5c51c1037850b35fb1b379806638ec60aaa758242b48fe00900aaadd61b63</originalsourceid><addsrcrecordid>eNqFkcFOGzEQhq2qqAm0V44oUi-9bDq21_buBSmKAgQhuLRny-v1FiOvN9i7VOmpj8Az8iQ4SpoCF06eGX_z6x_9CB1jmGIA8l15a6YECAAuGf-AxpgRnFEh6MdU55RmomB4hA5jvEt8UQD_hEaUQIlxzsfochlsbYf26e_jXPXKrf-YerLwyve2i8YZ3dsHM1n63oS2S-3gVEhtnerJnKStmXNrpxLtP6ODRrlovuzeI_TzbPFjfpFd3Zwv57OrTDNgPMtz3TDNsMZAkzeoKGsqXFFRJm-cFkZzUEoJVpCcVHnRGIASNqO65rji9AidbnVXQ9WaWhvfB-XkKthWhbXslJWvf7y9lb-6BykIFgRoEvi2Ewjd_WBiL1sbtXFOedMNURLKKeQCg0jo1zfoXTcEn85LVElKThgrEjXdUjp0MQbT7M1gkJuY5CYmuY8pLZy8PGGP_8slAeUW-G2dWb8jJ2fXy8V_8WepXaDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392962558</pqid></control><display><type>article</type><title>Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation</title><source>Wiley Online Library All Journals</source><creator>Rossi‐Ashton, James A. ; Clarke, Aimee K. ; Donald, James R. ; Zheng, Chao ; Taylor, Richard J. K. ; Unsworth, William P. ; You, Shu‐Li</creator><creatorcontrib>Rossi‐Ashton, James A. ; Clarke, Aimee K. ; Donald, James R. ; Zheng, Chao ; Taylor, Richard J. K. ; Unsworth, William P. ; You, Shu‐Li</creatorcontrib><description>The enantioselective intermolecular C2‐allylation of 3‐substituted indoles is reported for the first time. This directing group‐free approach relies on a chiral Ir‐(P, olefin) complex and Mg(ClO4)2 Lewis acid catalyst system to promote allylic substitution, providing the C2‐allylated products in typically high yields (40–99 %) and enantioselectivities (83–99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation, rather than C3‐allylation followed by in situ migration. Steric congestion at the indole‐C3 position and improved π–π stacking interactions have been identified as major contributors to the C2‐selectivity. An enantioselective C2‐allylation of 3‐substituted indoles is reported, providing C2‐allylated products with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation with steric congestion at the indole‐C3 position and π–π stacking interactions identified as major contributors to the selectivity observed.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202001956</identifier><identifier>PMID: 32091146</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Allyl compounds ; allylic substitution ; Catalysts ; Chemical reactions ; DFT calculations ; Enantiomers ; enantioselective synthesis ; indole ; Indoles ; Iridium ; Lewis acid ; Magnesium perchlorates ; Selectivity ; Substitution reactions</subject><ispartof>Angewandte Chemie International Edition, 2020-05, Vol.59 (19), p.7598-7604</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5056-44cf5c51c1037850b35fb1b379806638ec60aaa758242b48fe00900aaadd61b63</citedby><cites>FETCH-LOGICAL-c5056-44cf5c51c1037850b35fb1b379806638ec60aaa758242b48fe00900aaadd61b63</cites><orcidid>0000-0002-9169-5156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202001956$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202001956$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32091146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossi‐Ashton, James A.</creatorcontrib><creatorcontrib>Clarke, Aimee K.</creatorcontrib><creatorcontrib>Donald, James R.</creatorcontrib><creatorcontrib>Zheng, Chao</creatorcontrib><creatorcontrib>Taylor, Richard J. K.</creatorcontrib><creatorcontrib>Unsworth, William P.</creatorcontrib><creatorcontrib>You, Shu‐Li</creatorcontrib><title>Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The enantioselective intermolecular C2‐allylation of 3‐substituted indoles is reported for the first time. This directing group‐free approach relies on a chiral Ir‐(P, olefin) complex and Mg(ClO4)2 Lewis acid catalyst system to promote allylic substitution, providing the C2‐allylated products in typically high yields (40–99 %) and enantioselectivities (83–99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation, rather than C3‐allylation followed by in situ migration. Steric congestion at the indole‐C3 position and improved π–π stacking interactions have been identified as major contributors to the C2‐selectivity. An enantioselective C2‐allylation of 3‐substituted indoles is reported, providing C2‐allylated products with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation with steric congestion at the indole‐C3 position and π–π stacking interactions identified as major contributors to the selectivity observed.</description><subject>Allyl compounds</subject><subject>allylic substitution</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>DFT calculations</subject><subject>Enantiomers</subject><subject>enantioselective synthesis</subject><subject>indole</subject><subject>Indoles</subject><subject>Iridium</subject><subject>Lewis acid</subject><subject>Magnesium perchlorates</subject><subject>Selectivity</subject><subject>Substitution reactions</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcFOGzEQhq2qqAm0V44oUi-9bDq21_buBSmKAgQhuLRny-v1FiOvN9i7VOmpj8Az8iQ4SpoCF06eGX_z6x_9CB1jmGIA8l15a6YECAAuGf-AxpgRnFEh6MdU55RmomB4hA5jvEt8UQD_hEaUQIlxzsfochlsbYf26e_jXPXKrf-YerLwyve2i8YZ3dsHM1n63oS2S-3gVEhtnerJnKStmXNrpxLtP6ODRrlovuzeI_TzbPFjfpFd3Zwv57OrTDNgPMtz3TDNsMZAkzeoKGsqXFFRJm-cFkZzUEoJVpCcVHnRGIASNqO65rji9AidbnVXQ9WaWhvfB-XkKthWhbXslJWvf7y9lb-6BykIFgRoEvi2Ewjd_WBiL1sbtXFOedMNURLKKeQCg0jo1zfoXTcEn85LVElKThgrEjXdUjp0MQbT7M1gkJuY5CYmuY8pLZy8PGGP_8slAeUW-G2dWb8jJ2fXy8V_8WepXaDo</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Rossi‐Ashton, James A.</creator><creator>Clarke, Aimee K.</creator><creator>Donald, James R.</creator><creator>Zheng, Chao</creator><creator>Taylor, Richard J. K.</creator><creator>Unsworth, William P.</creator><creator>You, Shu‐Li</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9169-5156</orcidid></search><sort><creationdate>20200504</creationdate><title>Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation</title><author>Rossi‐Ashton, James A. ; Clarke, Aimee K. ; Donald, James R. ; Zheng, Chao ; Taylor, Richard J. K. ; Unsworth, William P. ; You, Shu‐Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5056-44cf5c51c1037850b35fb1b379806638ec60aaa758242b48fe00900aaadd61b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allyl compounds</topic><topic>allylic substitution</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>DFT calculations</topic><topic>Enantiomers</topic><topic>enantioselective synthesis</topic><topic>indole</topic><topic>Indoles</topic><topic>Iridium</topic><topic>Lewis acid</topic><topic>Magnesium perchlorates</topic><topic>Selectivity</topic><topic>Substitution reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi‐Ashton, James A.</creatorcontrib><creatorcontrib>Clarke, Aimee K.</creatorcontrib><creatorcontrib>Donald, James R.</creatorcontrib><creatorcontrib>Zheng, Chao</creatorcontrib><creatorcontrib>Taylor, Richard J. K.</creatorcontrib><creatorcontrib>Unsworth, William P.</creatorcontrib><creatorcontrib>You, Shu‐Li</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi‐Ashton, James A.</au><au>Clarke, Aimee K.</au><au>Donald, James R.</au><au>Zheng, Chao</au><au>Taylor, Richard J. K.</au><au>Unsworth, William P.</au><au>You, Shu‐Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-05-04</date><risdate>2020</risdate><volume>59</volume><issue>19</issue><spage>7598</spage><epage>7604</epage><pages>7598-7604</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The enantioselective intermolecular C2‐allylation of 3‐substituted indoles is reported for the first time. This directing group‐free approach relies on a chiral Ir‐(P, olefin) complex and Mg(ClO4)2 Lewis acid catalyst system to promote allylic substitution, providing the C2‐allylated products in typically high yields (40–99 %) and enantioselectivities (83–99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation, rather than C3‐allylation followed by in situ migration. Steric congestion at the indole‐C3 position and improved π–π stacking interactions have been identified as major contributors to the C2‐selectivity. An enantioselective C2‐allylation of 3‐substituted indoles is reported, providing C2‐allylated products with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation with steric congestion at the indole‐C3 position and π–π stacking interactions identified as major contributors to the selectivity observed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32091146</pmid><doi>10.1002/anie.202001956</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9169-5156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-05, Vol.59 (19), p.7598-7604
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217203
source Wiley Online Library All Journals
subjects Allyl compounds
allylic substitution
Catalysts
Chemical reactions
DFT calculations
Enantiomers
enantioselective synthesis
indole
Indoles
Iridium
Lewis acid
Magnesium perchlorates
Selectivity
Substitution reactions
title Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iridium%E2%80%90Catalyzed%20Enantioselective%20Intermolecular%20Indole%20C2%E2%80%90Allylation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Rossi%E2%80%90Ashton,%20James%20A.&rft.date=2020-05-04&rft.volume=59&rft.issue=19&rft.spage=7598&rft.epage=7604&rft.pages=7598-7604&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202001956&rft_dat=%3Cproquest_pubme%3E2363047107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392962558&rft_id=info:pmid/32091146&rfr_iscdi=true