Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets

Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2020-05, Vol.5 (5), p.1380-1385
Hauptverfasser: Singldinger, Andreas, Gramlich, Moritz, Gruber, Christoph, Lampe, Carola, Urban, Alexander S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1385
container_issue 5
container_start_page 1380
container_title ACS energy letters
container_volume 5
creator Singldinger, Andreas
Gramlich, Moritz
Gruber, Christoph
Lampe, Carola
Urban, Alexander S
description Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy transfer (FRET) could be an efficient alternative, halide ion migration makes the realization of cascaded structures difficult. Here, we show how these could be obtained by exploiting the pronounced quantum confinement effect in two-dimensional CsPbBr3-based nanoplatelets (NPls). In thin films of NPls of two predetermined thicknesses, we observe an enhanced acceptor photoluminescence (PL) emission and a decreased donor PL lifetime. This indicates a FRET-mediated process, benefitted by the structural parameters of the NPls. We determine corresponding transfer rates up to k FRET = 0.99 ns–1 and efficiencies of nearly ηFRET = 70%. We also show FRET to occur between perovskite NPls of other thicknesses. Consequently, this strategy could lead to tailored energy cascade nanostructures for improved optoelectronic devices.
doi_str_mv 10.1021/acsenergylett.0c00471
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404382768</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-2c2516e2896568553e8f7e7b01020618edf89298633c22becc240adad87b509f3</originalsourceid><addsrcrecordid>eNqFkc1OAyEUhYnRqFEfQTNLN6PADDPMxsQ09Sdp1EVduCIMc6fFUqhAa3x70dZGV4YFJPec755wEDol-IJgSi6lCmDBTz4MxHiBFcZlTXbQIS04zjlp2O6v9wE6CeEVY0wqztLZRwcFLWkCsUP08uCsl52WUa8gG35Ds7GXNvTgsxbiO4DNxlOtZhZCyAfORu-MgS67k0Z3kD2Bd6sw0xGyB2ndwsgIKVY4Rnu9NAFONvcRer4Zjgd3-ejx9n5wPcplyYqYU0UZqYDypmIpHyuA9zXULU75cEU4dD1vaMOrolCUtqAULbHsZMfrluGmL47Q1Zq7WLZz6BSkgNKIhddz6T-Ek1r8nVg9FRO3EjUlVcnrBDjfALx7W0KIYq6DAmOkBbcMIu0rC07riicpW0uVdyF46LdrCBZfzYg_zYhNM8l39jvj1vXTQxKQtSD5xatbepu-7B_oJxXqoSE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404382768</pqid></control><display><type>article</type><title>Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets</title><source>ACS Publications</source><creator>Singldinger, Andreas ; Gramlich, Moritz ; Gruber, Christoph ; Lampe, Carola ; Urban, Alexander S</creator><creatorcontrib>Singldinger, Andreas ; Gramlich, Moritz ; Gruber, Christoph ; Lampe, Carola ; Urban, Alexander S</creatorcontrib><description>Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy transfer (FRET) could be an efficient alternative, halide ion migration makes the realization of cascaded structures difficult. Here, we show how these could be obtained by exploiting the pronounced quantum confinement effect in two-dimensional CsPbBr3-based nanoplatelets (NPls). In thin films of NPls of two predetermined thicknesses, we observe an enhanced acceptor photoluminescence (PL) emission and a decreased donor PL lifetime. This indicates a FRET-mediated process, benefitted by the structural parameters of the NPls. We determine corresponding transfer rates up to k FRET = 0.99 ns–1 and efficiencies of nearly ηFRET = 70%. We also show FRET to occur between perovskite NPls of other thicknesses. Consequently, this strategy could lead to tailored energy cascade nanostructures for improved optoelectronic devices.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.0c00471</identifier><identifier>PMID: 32421025</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter</subject><ispartof>ACS energy letters, 2020-05, Vol.5 (5), p.1380-1385</ispartof><rights>Copyright © 2020 American Chemical Society.</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-2c2516e2896568553e8f7e7b01020618edf89298633c22becc240adad87b509f3</citedby><cites>FETCH-LOGICAL-a453t-2c2516e2896568553e8f7e7b01020618edf89298633c22becc240adad87b509f3</cites><orcidid>0000-0001-6168-2509 ; 0000-0002-3613-6570 ; 0000-0002-4733-4708 ; 0000-0001-7833-7306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.0c00471$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.0c00471$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32421025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singldinger, Andreas</creatorcontrib><creatorcontrib>Gramlich, Moritz</creatorcontrib><creatorcontrib>Gruber, Christoph</creatorcontrib><creatorcontrib>Lampe, Carola</creatorcontrib><creatorcontrib>Urban, Alexander S</creatorcontrib><title>Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy transfer (FRET) could be an efficient alternative, halide ion migration makes the realization of cascaded structures difficult. Here, we show how these could be obtained by exploiting the pronounced quantum confinement effect in two-dimensional CsPbBr3-based nanoplatelets (NPls). In thin films of NPls of two predetermined thicknesses, we observe an enhanced acceptor photoluminescence (PL) emission and a decreased donor PL lifetime. This indicates a FRET-mediated process, benefitted by the structural parameters of the NPls. We determine corresponding transfer rates up to k FRET = 0.99 ns–1 and efficiencies of nearly ηFRET = 70%. We also show FRET to occur between perovskite NPls of other thicknesses. Consequently, this strategy could lead to tailored energy cascade nanostructures for improved optoelectronic devices.</description><subject>Letter</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OAyEUhYnRqFEfQTNLN6PADDPMxsQ09Sdp1EVduCIMc6fFUqhAa3x70dZGV4YFJPec755wEDol-IJgSi6lCmDBTz4MxHiBFcZlTXbQIS04zjlp2O6v9wE6CeEVY0wqztLZRwcFLWkCsUP08uCsl52WUa8gG35Ds7GXNvTgsxbiO4DNxlOtZhZCyAfORu-MgS67k0Z3kD2Bd6sw0xGyB2ndwsgIKVY4Rnu9NAFONvcRer4Zjgd3-ejx9n5wPcplyYqYU0UZqYDypmIpHyuA9zXULU75cEU4dD1vaMOrolCUtqAULbHsZMfrluGmL47Q1Zq7WLZz6BSkgNKIhddz6T-Ek1r8nVg9FRO3EjUlVcnrBDjfALx7W0KIYq6DAmOkBbcMIu0rC07riicpW0uVdyF46LdrCBZfzYg_zYhNM8l39jvj1vXTQxKQtSD5xatbepu-7B_oJxXqoSE</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Singldinger, Andreas</creator><creator>Gramlich, Moritz</creator><creator>Gruber, Christoph</creator><creator>Lampe, Carola</creator><creator>Urban, Alexander S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6168-2509</orcidid><orcidid>https://orcid.org/0000-0002-3613-6570</orcidid><orcidid>https://orcid.org/0000-0002-4733-4708</orcidid><orcidid>https://orcid.org/0000-0001-7833-7306</orcidid></search><sort><creationdate>20200508</creationdate><title>Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets</title><author>Singldinger, Andreas ; Gramlich, Moritz ; Gruber, Christoph ; Lampe, Carola ; Urban, Alexander S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-2c2516e2896568553e8f7e7b01020618edf89298633c22becc240adad87b509f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Letter</topic><toplevel>online_resources</toplevel><creatorcontrib>Singldinger, Andreas</creatorcontrib><creatorcontrib>Gramlich, Moritz</creatorcontrib><creatorcontrib>Gruber, Christoph</creatorcontrib><creatorcontrib>Lampe, Carola</creatorcontrib><creatorcontrib>Urban, Alexander S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singldinger, Andreas</au><au>Gramlich, Moritz</au><au>Gruber, Christoph</au><au>Lampe, Carola</au><au>Urban, Alexander S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2020-05-08</date><risdate>2020</risdate><volume>5</volume><issue>5</issue><spage>1380</spage><epage>1385</epage><pages>1380-1385</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy transfer (FRET) could be an efficient alternative, halide ion migration makes the realization of cascaded structures difficult. Here, we show how these could be obtained by exploiting the pronounced quantum confinement effect in two-dimensional CsPbBr3-based nanoplatelets (NPls). In thin films of NPls of two predetermined thicknesses, we observe an enhanced acceptor photoluminescence (PL) emission and a decreased donor PL lifetime. This indicates a FRET-mediated process, benefitted by the structural parameters of the NPls. We determine corresponding transfer rates up to k FRET = 0.99 ns–1 and efficiencies of nearly ηFRET = 70%. We also show FRET to occur between perovskite NPls of other thicknesses. Consequently, this strategy could lead to tailored energy cascade nanostructures for improved optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32421025</pmid><doi>10.1021/acsenergylett.0c00471</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6168-2509</orcidid><orcidid>https://orcid.org/0000-0002-3613-6570</orcidid><orcidid>https://orcid.org/0000-0002-4733-4708</orcidid><orcidid>https://orcid.org/0000-0001-7833-7306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2020-05, Vol.5 (5), p.1380-1385
issn 2380-8195
2380-8195
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216487
source ACS Publications
subjects Letter
title Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonradiative%20Energy%20Transfer%20between%20Thickness-Controlled%20Halide%20Perovskite%20Nanoplatelets&rft.jtitle=ACS%20energy%20letters&rft.au=Singldinger,%20Andreas&rft.date=2020-05-08&rft.volume=5&rft.issue=5&rft.spage=1380&rft.epage=1385&rft.pages=1380-1385&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.0c00471&rft_dat=%3Cproquest_pubme%3E2404382768%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404382768&rft_id=info:pmid/32421025&rfr_iscdi=true