A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process

Natural fibers such as kenaf, hemp, flax, jute, and sisal have become the subject of much research as potential green or eco-friendly reinforcement composites, since they assure the reduction of weight, cost, and CO release with less reliance on oil sources. Herein, an inexpensive and eco-friendly w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-04, Vol.13 (8), p.1844
Hauptverfasser: Bifulco, Aurelio, Silvestri, Brigida, Passaro, Jessica, Boccarusso, Luca, Roviello, Valentina, Branda, Francesco, Durante, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1844
container_title Materials
container_volume 13
creator Bifulco, Aurelio
Silvestri, Brigida
Passaro, Jessica
Boccarusso, Luca
Roviello, Valentina
Branda, Francesco
Durante, Massimo
description Natural fibers such as kenaf, hemp, flax, jute, and sisal have become the subject of much research as potential green or eco-friendly reinforcement composites, since they assure the reduction of weight, cost, and CO release with less reliance on oil sources. Herein, an inexpensive and eco-friendly waterglass treatment is proposed, allowing the production of silica-coated fibers that can be easily obtained in micro/nano fibrils through a low power mixer. The silica coating has been exploited to improve the chemical compatibility between fibers and the polymer matrix through the reaction of silanol groups with suitable coupling agents. In particular, silica-coated fibers easily functionalized with (3-Aminopropyl) triethoxysilane (APTS) were used as a filler in the manufacturing of epoxy-based composites. Morphological investigation of the composites through Scanning Electron Microscopy (SEM) demonstrated that the filler has a tendency to produce a web-like structure, formed by continuously interconnected fibrils and microfibrils, from which particularly effective mechanical properties may be obtained. Dynamic Mechanical Analysis (DMA) shows that the functionalized fibers, in a concentration of 5 wt%, strongly affect the glass transformation temperature (10 °C increase) and the storage modulus of the pristine resin. Taking into account the large number of organosilicon compounds (in particular the alkoxide ones) available on the market, the new process appears to pave the way for the cleaner and cheaper production of biocomposites with different polymeric matrices and well-tailored interfaces.
doi_str_mv 10.3390/MA13081844
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391628282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-33001ed787567830ff83d0c32a2f57e4f3d2c3c3873ba36125a46d5f90f73e4f3</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMoKuqLP0ACvohQTTJt2r4I6-INvIGKjyGbTnYrbbMmrbL_3ixeUCcPE5gvhzM5hOxydgRQsuObEQdW8CJNV8gmL0uZ8DJNV3_dN8hOCC8sFgAvRLlONkCIMhMZ3ySPI3qL7_Sh97rH6YL2jt57Vw0G6SW2c3peT9AH2s-8G6Yzqulz5Py00SEkpzpgRc-Ms77GrmoWy6cGQ9gma1Y3AXe--hZ5Oj97HF8m13cXV-PRdWJSJvsEgDGOVV7kmcwLYNYWUDEDQgub5ZhaqIQBA0UOEw2Si0ynsspsyWwOy_EWOfnUnQ-TFiuDXVyjUXNft9ovlNO1-jvp6pmaujeVCy45k1Hg4EvAu9cBQ6_aOhhsGt2hG4IS8YdlBlnKIrr_D31xg-_iekuKS1HEE6nDT8p4F4JH-2OGM7XMS7X6O68I7_22_4N-pwMfF5SOsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391628282</pqid></control><display><type>article</type><title>A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bifulco, Aurelio ; Silvestri, Brigida ; Passaro, Jessica ; Boccarusso, Luca ; Roviello, Valentina ; Branda, Francesco ; Durante, Massimo</creator><creatorcontrib>Bifulco, Aurelio ; Silvestri, Brigida ; Passaro, Jessica ; Boccarusso, Luca ; Roviello, Valentina ; Branda, Francesco ; Durante, Massimo</creatorcontrib><description>Natural fibers such as kenaf, hemp, flax, jute, and sisal have become the subject of much research as potential green or eco-friendly reinforcement composites, since they assure the reduction of weight, cost, and CO release with less reliance on oil sources. Herein, an inexpensive and eco-friendly waterglass treatment is proposed, allowing the production of silica-coated fibers that can be easily obtained in micro/nano fibrils through a low power mixer. The silica coating has been exploited to improve the chemical compatibility between fibers and the polymer matrix through the reaction of silanol groups with suitable coupling agents. In particular, silica-coated fibers easily functionalized with (3-Aminopropyl) triethoxysilane (APTS) were used as a filler in the manufacturing of epoxy-based composites. Morphological investigation of the composites through Scanning Electron Microscopy (SEM) demonstrated that the filler has a tendency to produce a web-like structure, formed by continuously interconnected fibrils and microfibrils, from which particularly effective mechanical properties may be obtained. Dynamic Mechanical Analysis (DMA) shows that the functionalized fibers, in a concentration of 5 wt%, strongly affect the glass transformation temperature (10 °C increase) and the storage modulus of the pristine resin. Taking into account the large number of organosilicon compounds (in particular the alkoxide ones) available on the market, the new process appears to pave the way for the cleaner and cheaper production of biocomposites with different polymeric matrices and well-tailored interfaces.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/MA13081844</identifier><identifier>PMID: 32295251</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biomedical materials ; Bisphenol A ; Cellulose ; Chemical compatibility ; Coated fibers ; Composite materials ; Coupling agents ; Dynamic mechanical analysis ; Energy consumption ; Epoxy resins ; Flax ; Hemp ; Hydrochloric acid ; Jute ; Kenaf ; Mechanical properties ; NMR ; Nuclear magnetic resonance ; Organosilicon compounds ; Polyamines ; Scanning electron microscopy ; Silicon dioxide ; Sisal ; Spectrum analysis ; Storage modulus ; Transformation temperature ; Weight reduction</subject><ispartof>Materials, 2020-04, Vol.13 (8), p.1844</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-33001ed787567830ff83d0c32a2f57e4f3d2c3c3873ba36125a46d5f90f73e4f3</citedby><cites>FETCH-LOGICAL-c406t-33001ed787567830ff83d0c32a2f57e4f3d2c3c3873ba36125a46d5f90f73e4f3</cites><orcidid>0000-0002-3496-5869 ; 0000-0003-1654-8698 ; 0000-0002-4214-5385 ; 0000-0002-6588-2580 ; 0000-0003-3216-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216106/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216106/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32295251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bifulco, Aurelio</creatorcontrib><creatorcontrib>Silvestri, Brigida</creatorcontrib><creatorcontrib>Passaro, Jessica</creatorcontrib><creatorcontrib>Boccarusso, Luca</creatorcontrib><creatorcontrib>Roviello, Valentina</creatorcontrib><creatorcontrib>Branda, Francesco</creatorcontrib><creatorcontrib>Durante, Massimo</creatorcontrib><title>A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Natural fibers such as kenaf, hemp, flax, jute, and sisal have become the subject of much research as potential green or eco-friendly reinforcement composites, since they assure the reduction of weight, cost, and CO release with less reliance on oil sources. Herein, an inexpensive and eco-friendly waterglass treatment is proposed, allowing the production of silica-coated fibers that can be easily obtained in micro/nano fibrils through a low power mixer. The silica coating has been exploited to improve the chemical compatibility between fibers and the polymer matrix through the reaction of silanol groups with suitable coupling agents. In particular, silica-coated fibers easily functionalized with (3-Aminopropyl) triethoxysilane (APTS) were used as a filler in the manufacturing of epoxy-based composites. Morphological investigation of the composites through Scanning Electron Microscopy (SEM) demonstrated that the filler has a tendency to produce a web-like structure, formed by continuously interconnected fibrils and microfibrils, from which particularly effective mechanical properties may be obtained. Dynamic Mechanical Analysis (DMA) shows that the functionalized fibers, in a concentration of 5 wt%, strongly affect the glass transformation temperature (10 °C increase) and the storage modulus of the pristine resin. Taking into account the large number of organosilicon compounds (in particular the alkoxide ones) available on the market, the new process appears to pave the way for the cleaner and cheaper production of biocomposites with different polymeric matrices and well-tailored interfaces.</description><subject>Biomedical materials</subject><subject>Bisphenol A</subject><subject>Cellulose</subject><subject>Chemical compatibility</subject><subject>Coated fibers</subject><subject>Composite materials</subject><subject>Coupling agents</subject><subject>Dynamic mechanical analysis</subject><subject>Energy consumption</subject><subject>Epoxy resins</subject><subject>Flax</subject><subject>Hemp</subject><subject>Hydrochloric acid</subject><subject>Jute</subject><subject>Kenaf</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organosilicon compounds</subject><subject>Polyamines</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>Sisal</subject><subject>Spectrum analysis</subject><subject>Storage modulus</subject><subject>Transformation temperature</subject><subject>Weight reduction</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLxDAQhYMoKuqLP0ACvohQTTJt2r4I6-INvIGKjyGbTnYrbbMmrbL_3ixeUCcPE5gvhzM5hOxydgRQsuObEQdW8CJNV8gmL0uZ8DJNV3_dN8hOCC8sFgAvRLlONkCIMhMZ3ySPI3qL7_Sh97rH6YL2jt57Vw0G6SW2c3peT9AH2s-8G6Yzqulz5Py00SEkpzpgRc-Ms77GrmoWy6cGQ9gma1Y3AXe--hZ5Oj97HF8m13cXV-PRdWJSJvsEgDGOVV7kmcwLYNYWUDEDQgub5ZhaqIQBA0UOEw2Si0ynsspsyWwOy_EWOfnUnQ-TFiuDXVyjUXNft9ovlNO1-jvp6pmaujeVCy45k1Hg4EvAu9cBQ6_aOhhsGt2hG4IS8YdlBlnKIrr_D31xg-_iekuKS1HEE6nDT8p4F4JH-2OGM7XMS7X6O68I7_22_4N-pwMfF5SOsg</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Bifulco, Aurelio</creator><creator>Silvestri, Brigida</creator><creator>Passaro, Jessica</creator><creator>Boccarusso, Luca</creator><creator>Roviello, Valentina</creator><creator>Branda, Francesco</creator><creator>Durante, Massimo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3496-5869</orcidid><orcidid>https://orcid.org/0000-0003-1654-8698</orcidid><orcidid>https://orcid.org/0000-0002-4214-5385</orcidid><orcidid>https://orcid.org/0000-0002-6588-2580</orcidid><orcidid>https://orcid.org/0000-0003-3216-9081</orcidid></search><sort><creationdate>20200414</creationdate><title>A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process</title><author>Bifulco, Aurelio ; Silvestri, Brigida ; Passaro, Jessica ; Boccarusso, Luca ; Roviello, Valentina ; Branda, Francesco ; Durante, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-33001ed787567830ff83d0c32a2f57e4f3d2c3c3873ba36125a46d5f90f73e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical materials</topic><topic>Bisphenol A</topic><topic>Cellulose</topic><topic>Chemical compatibility</topic><topic>Coated fibers</topic><topic>Composite materials</topic><topic>Coupling agents</topic><topic>Dynamic mechanical analysis</topic><topic>Energy consumption</topic><topic>Epoxy resins</topic><topic>Flax</topic><topic>Hemp</topic><topic>Hydrochloric acid</topic><topic>Jute</topic><topic>Kenaf</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organosilicon compounds</topic><topic>Polyamines</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>Sisal</topic><topic>Spectrum analysis</topic><topic>Storage modulus</topic><topic>Transformation temperature</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bifulco, Aurelio</creatorcontrib><creatorcontrib>Silvestri, Brigida</creatorcontrib><creatorcontrib>Passaro, Jessica</creatorcontrib><creatorcontrib>Boccarusso, Luca</creatorcontrib><creatorcontrib>Roviello, Valentina</creatorcontrib><creatorcontrib>Branda, Francesco</creatorcontrib><creatorcontrib>Durante, Massimo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bifulco, Aurelio</au><au>Silvestri, Brigida</au><au>Passaro, Jessica</au><au>Boccarusso, Luca</au><au>Roviello, Valentina</au><au>Branda, Francesco</au><au>Durante, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-04-14</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>1844</spage><pages>1844-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Natural fibers such as kenaf, hemp, flax, jute, and sisal have become the subject of much research as potential green or eco-friendly reinforcement composites, since they assure the reduction of weight, cost, and CO release with less reliance on oil sources. Herein, an inexpensive and eco-friendly waterglass treatment is proposed, allowing the production of silica-coated fibers that can be easily obtained in micro/nano fibrils through a low power mixer. The silica coating has been exploited to improve the chemical compatibility between fibers and the polymer matrix through the reaction of silanol groups with suitable coupling agents. In particular, silica-coated fibers easily functionalized with (3-Aminopropyl) triethoxysilane (APTS) were used as a filler in the manufacturing of epoxy-based composites. Morphological investigation of the composites through Scanning Electron Microscopy (SEM) demonstrated that the filler has a tendency to produce a web-like structure, formed by continuously interconnected fibrils and microfibrils, from which particularly effective mechanical properties may be obtained. Dynamic Mechanical Analysis (DMA) shows that the functionalized fibers, in a concentration of 5 wt%, strongly affect the glass transformation temperature (10 °C increase) and the storage modulus of the pristine resin. Taking into account the large number of organosilicon compounds (in particular the alkoxide ones) available on the market, the new process appears to pave the way for the cleaner and cheaper production of biocomposites with different polymeric matrices and well-tailored interfaces.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32295251</pmid><doi>10.3390/MA13081844</doi><orcidid>https://orcid.org/0000-0002-3496-5869</orcidid><orcidid>https://orcid.org/0000-0003-1654-8698</orcidid><orcidid>https://orcid.org/0000-0002-4214-5385</orcidid><orcidid>https://orcid.org/0000-0002-6588-2580</orcidid><orcidid>https://orcid.org/0000-0003-3216-9081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-04, Vol.13 (8), p.1844
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216106
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biomedical materials
Bisphenol A
Cellulose
Chemical compatibility
Coated fibers
Composite materials
Coupling agents
Dynamic mechanical analysis
Energy consumption
Epoxy resins
Flax
Hemp
Hydrochloric acid
Jute
Kenaf
Mechanical properties
NMR
Nuclear magnetic resonance
Organosilicon compounds
Polyamines
Scanning electron microscopy
Silicon dioxide
Sisal
Spectrum analysis
Storage modulus
Transformation temperature
Weight reduction
title A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Strategy%20to%20Produce%20Hemp%20Fibers%20through%20a%20Waterglass-Based%20Ecofriendly%20Process&rft.jtitle=Materials&rft.au=Bifulco,%20Aurelio&rft.date=2020-04-14&rft.volume=13&rft.issue=8&rft.spage=1844&rft.pages=1844-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/MA13081844&rft_dat=%3Cproquest_pubme%3E2391628282%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391628282&rft_id=info:pmid/32295251&rfr_iscdi=true