Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition

Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2020-05, Vol.24 (10), p.5758-5771
Hauptverfasser: Alimujiang, Miriayi, Yu, Xue‐ying, Yu, Mu‐yu, Hou, Wo‐lin, Yan, Zhong‐hong, Yang, Ying, Bao, Yu‐qian, Yin, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5771
container_issue 10
container_start_page 5758
container_title Journal of cellular and molecular medicine
container_volume 24
creator Alimujiang, Miriayi
Yu, Xue‐ying
Yu, Mu‐yu
Hou, Wo‐lin
Yan, Zhong‐hong
Yang, Ying
Bao, Yu‐qian
Yin, Jun
description Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High‐fat diet‐induced obese mice represented pre‐diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark‐type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV‐dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre‐diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II‐dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I‐dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early‐stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.
doi_str_mv 10.1111/jcmm.15238
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387259840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-26e1f80902c76100671689dc688315483c12ac1ebd6af0598de9f4c18ddef0743</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYMotl198QNIwBcRts2_yWReBFmqrbSsoIJvIZPc6WaZSbbJTHW_fbPuWrQP3pdcyO-c3NyD0CtKTmmps7UdhlNaMa6eoGNaKTYXDRdPDz1VXB2hk5zXhHBJefMcHXHGKq4oP0b2PKxMsOBw7-8g4XYacYgjHqZse8DLH18ull-xD9h508IIGZvgcAI37TQ3_WRjBhyncVOE7RbbOGx6-IUvi2blWz_6GF6gZ53pM7w8nDP0_eP5t8XF_Gr56XLx4WpuhVBqziTQTpGGMFtLSoisqVSNs1IpTiuhuKXMWAqtk6YjVaMcNJ2wVDkHHakFn6H3e9_N1A7gLIQxmV5vkh9M2upovP73JviVvol3umZU0LKaGXp7MEjxdoI86sFnC31vAsQp67LhmpWHBSnom0foOk4plO9pJogUdcOZLNS7PWVTzDlB9zAMJXqXnd5lp39nV-DXf4__gP4JqwB0D_z0PWz_Y6U_L66v96b30yOkLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406479326</pqid></control><display><type>article</type><title>Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition</title><source>MEDLINE</source><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Alimujiang, Miriayi ; Yu, Xue‐ying ; Yu, Mu‐yu ; Hou, Wo‐lin ; Yan, Zhong‐hong ; Yang, Ying ; Bao, Yu‐qian ; Yin, Jun</creator><creatorcontrib>Alimujiang, Miriayi ; Yu, Xue‐ying ; Yu, Mu‐yu ; Hou, Wo‐lin ; Yan, Zhong‐hong ; Yang, Ying ; Bao, Yu‐qian ; Yin, Jun</creatorcontrib><description>Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High‐fat diet‐induced obese mice represented pre‐diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark‐type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV‐dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre‐diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II‐dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I‐dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early‐stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15238</identifier><identifier>PMID: 32253813</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>AMP ; Animal models ; Animals ; Cell Death ; Cells, Cultured ; Cytotoxicity ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - pathology ; Diet, High-Fat ; Electron transport chain ; Electron Transport Complex I - antagonists &amp; inhibitors ; Electron Transport Complex I - metabolism ; Energy Metabolism ; Feeding Behavior ; Glucose ; Glucose - metabolism ; Hepatocytes ; Hepatocytes - metabolism ; High fat diet ; Hyperglycemia ; Insulin resistance ; Laboratory animals ; Liver ; Liver - metabolism ; liver steatosis ; Metabolic disorders ; Metabolism ; Mice, Inbred C57BL ; Mimicry ; Mitochondria ; Mitochondria, Liver - metabolism ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; NADH-ubiquinone oxidoreductase ; NAFLD ; Obesity ; Oleic acid ; Original ; Oxidative Phosphorylation ; Oxygen Consumption ; Phosphorylation ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Respiration ; ROS ; Rotenone ; Streptozocin</subject><ispartof>Journal of cellular and molecular medicine, 2020-05, Vol.24 (10), p.5758-5771</ispartof><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4488-26e1f80902c76100671689dc688315483c12ac1ebd6af0598de9f4c18ddef0743</citedby><cites>FETCH-LOGICAL-c4488-26e1f80902c76100671689dc688315483c12ac1ebd6af0598de9f4c18ddef0743</cites><orcidid>0000-0001-8759-9391 ; 0000-0002-9826-3583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32253813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alimujiang, Miriayi</creatorcontrib><creatorcontrib>Yu, Xue‐ying</creatorcontrib><creatorcontrib>Yu, Mu‐yu</creatorcontrib><creatorcontrib>Hou, Wo‐lin</creatorcontrib><creatorcontrib>Yan, Zhong‐hong</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Bao, Yu‐qian</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><title>Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High‐fat diet‐induced obese mice represented pre‐diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark‐type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV‐dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre‐diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II‐dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I‐dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early‐stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.</description><subject>AMP</subject><subject>Animal models</subject><subject>Animals</subject><subject>Cell Death</subject><subject>Cells, Cultured</subject><subject>Cytotoxicity</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - pathology</subject><subject>Diet, High-Fat</subject><subject>Electron transport chain</subject><subject>Electron Transport Complex I - antagonists &amp; inhibitors</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Energy Metabolism</subject><subject>Feeding Behavior</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>High fat diet</subject><subject>Hyperglycemia</subject><subject>Insulin resistance</subject><subject>Laboratory animals</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>liver steatosis</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mimicry</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>NADH-ubiquinone oxidoreductase</subject><subject>NAFLD</subject><subject>Obesity</subject><subject>Oleic acid</subject><subject>Original</subject><subject>Oxidative Phosphorylation</subject><subject>Oxygen Consumption</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiration</subject><subject>ROS</subject><subject>Rotenone</subject><subject>Streptozocin</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9rFDEUxYMotl198QNIwBcRts2_yWReBFmqrbSsoIJvIZPc6WaZSbbJTHW_fbPuWrQP3pdcyO-c3NyD0CtKTmmps7UdhlNaMa6eoGNaKTYXDRdPDz1VXB2hk5zXhHBJefMcHXHGKq4oP0b2PKxMsOBw7-8g4XYacYgjHqZse8DLH18ull-xD9h508IIGZvgcAI37TQ3_WRjBhyncVOE7RbbOGx6-IUvi2blWz_6GF6gZ53pM7w8nDP0_eP5t8XF_Gr56XLx4WpuhVBqziTQTpGGMFtLSoisqVSNs1IpTiuhuKXMWAqtk6YjVaMcNJ2wVDkHHakFn6H3e9_N1A7gLIQxmV5vkh9M2upovP73JviVvol3umZU0LKaGXp7MEjxdoI86sFnC31vAsQp67LhmpWHBSnom0foOk4plO9pJogUdcOZLNS7PWVTzDlB9zAMJXqXnd5lp39nV-DXf4__gP4JqwB0D_z0PWz_Y6U_L66v96b30yOkLQ</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Alimujiang, Miriayi</creator><creator>Yu, Xue‐ying</creator><creator>Yu, Mu‐yu</creator><creator>Hou, Wo‐lin</creator><creator>Yan, Zhong‐hong</creator><creator>Yang, Ying</creator><creator>Bao, Yu‐qian</creator><creator>Yin, Jun</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8759-9391</orcidid><orcidid>https://orcid.org/0000-0002-9826-3583</orcidid></search><sort><creationdate>202005</creationdate><title>Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition</title><author>Alimujiang, Miriayi ; Yu, Xue‐ying ; Yu, Mu‐yu ; Hou, Wo‐lin ; Yan, Zhong‐hong ; Yang, Ying ; Bao, Yu‐qian ; Yin, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-26e1f80902c76100671689dc688315483c12ac1ebd6af0598de9f4c18ddef0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AMP</topic><topic>Animal models</topic><topic>Animals</topic><topic>Cell Death</topic><topic>Cells, Cultured</topic><topic>Cytotoxicity</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - pathology</topic><topic>Diet, High-Fat</topic><topic>Electron transport chain</topic><topic>Electron Transport Complex I - antagonists &amp; inhibitors</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Energy Metabolism</topic><topic>Feeding Behavior</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>High fat diet</topic><topic>Hyperglycemia</topic><topic>Insulin resistance</topic><topic>Laboratory animals</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>liver steatosis</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mimicry</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>NADH-ubiquinone oxidoreductase</topic><topic>NAFLD</topic><topic>Obesity</topic><topic>Oleic acid</topic><topic>Original</topic><topic>Oxidative Phosphorylation</topic><topic>Oxygen Consumption</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiration</topic><topic>ROS</topic><topic>Rotenone</topic><topic>Streptozocin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alimujiang, Miriayi</creatorcontrib><creatorcontrib>Yu, Xue‐ying</creatorcontrib><creatorcontrib>Yu, Mu‐yu</creatorcontrib><creatorcontrib>Hou, Wo‐lin</creatorcontrib><creatorcontrib>Yan, Zhong‐hong</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Bao, Yu‐qian</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alimujiang, Miriayi</au><au>Yu, Xue‐ying</au><au>Yu, Mu‐yu</au><au>Hou, Wo‐lin</au><au>Yan, Zhong‐hong</au><au>Yang, Ying</au><au>Bao, Yu‐qian</au><au>Yin, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-05</date><risdate>2020</risdate><volume>24</volume><issue>10</issue><spage>5758</spage><epage>5771</epage><pages>5758-5771</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High‐fat diet‐induced obese mice represented pre‐diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark‐type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV‐dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre‐diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II‐dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I‐dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early‐stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32253813</pmid><doi>10.1111/jcmm.15238</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8759-9391</orcidid><orcidid>https://orcid.org/0000-0002-9826-3583</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2020-05, Vol.24 (10), p.5758-5771
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214161
source MEDLINE; Wiley Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects AMP
Animal models
Animals
Cell Death
Cells, Cultured
Cytotoxicity
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
Diet, High-Fat
Electron transport chain
Electron Transport Complex I - antagonists & inhibitors
Electron Transport Complex I - metabolism
Energy Metabolism
Feeding Behavior
Glucose
Glucose - metabolism
Hepatocytes
Hepatocytes - metabolism
High fat diet
Hyperglycemia
Insulin resistance
Laboratory animals
Liver
Liver - metabolism
liver steatosis
Metabolic disorders
Metabolism
Mice, Inbred C57BL
Mimicry
Mitochondria
Mitochondria, Liver - metabolism
Muscle, Skeletal - metabolism
Musculoskeletal system
NADH-ubiquinone oxidoreductase
NAFLD
Obesity
Oleic acid
Original
Oxidative Phosphorylation
Oxygen Consumption
Phosphorylation
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Respiration
ROS
Rotenone
Streptozocin
title Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20liver%20but%20not%20muscle%20OXPHOS%20in%20diabetes%20and%20reduced%20glucose%20output%20by%20complex%20I%20inhibition&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Alimujiang,%20Miriayi&rft.date=2020-05&rft.volume=24&rft.issue=10&rft.spage=5758&rft.epage=5771&rft.pages=5758-5771&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15238&rft_dat=%3Cproquest_pubme%3E2387259840%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406479326&rft_id=info:pmid/32253813&rfr_iscdi=true