Rhapsody: predicting the pathogenicity of human missense variants

Abstract Motivation The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-05, Vol.36 (10), p.3084-3092
Hauptverfasser: Ponzoni, Luca, Peñaherrera, Daniel A, Oltvai, Zoltán N, Bahar, Ivet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3092
container_issue 10
container_start_page 3084
container_title Bioinformatics
container_volume 36
creator Ponzoni, Luca
Peñaherrera, Daniel A
Oltvai, Zoltán N
Bahar, Ivet
description Abstract Motivation The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. Results Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase. Availability and implementation The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa127
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa127</oup_id><sourcerecordid>2365190467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</originalsourceid><addsrcrecordid>eNqNkFtLxDAQhYMo7nr5C9JHX6pJc-nWB2FZvMGCIPocsul0G2mTmqQL---N7Cr65tMMzDdnzhyELgi-Irii1yvjjG2c71U0OlyvolKkKA_QlDCB8wLz6jD1VJQ5m2E6QSchvGPMCWPsGE1oQXDCyymav7RqCK7e3mSDh9roaOw6iy1kg4qtW4M12sRt5pqsHXtls96EADZAtlHeKBvDGTpqVBfgfF9P0dv93eviMV8-Pzwt5stcMy5iLnChGlwR3TBe1ZSAAIqZYjUnhBcF1zUVnKZeVTi5hKYsK-AMiADCOMzoKbrd6Q7jqodag41edXLwpld-K50y8u_Emlau3UaWBWGY0iRwuRfw7mOEEGX6RUPXKQtuDLJIBkiFmSgTKnao9i4ED83PGYLlV_7yb_5yn39avPht8mftO_AEkB3gxuG_op8G25mY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365190467</pqid></control><display><type>article</type><title>Rhapsody: predicting the pathogenicity of human missense variants</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ponzoni, Luca ; Peñaherrera, Daniel A ; Oltvai, Zoltán N ; Bahar, Ivet</creator><contributor>Ponty, Yann</contributor><creatorcontrib>Ponzoni, Luca ; Peñaherrera, Daniel A ; Oltvai, Zoltán N ; Bahar, Ivet ; Ponty, Yann</creatorcontrib><description>Abstract Motivation The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. Results Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase. Availability and implementation The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa127</identifier><identifier>PMID: 32101277</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; Computer Simulation ; Documentation ; Humans ; Original Papers ; Software ; Virulence</subject><ispartof>Bioinformatics, 2020-05, Vol.36 (10), p.3084-3092</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</citedby><cites>FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</cites><orcidid>0000-0001-9959-4176 ; 0000-0001-8125-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32101277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ponty, Yann</contributor><creatorcontrib>Ponzoni, Luca</creatorcontrib><creatorcontrib>Peñaherrera, Daniel A</creatorcontrib><creatorcontrib>Oltvai, Zoltán N</creatorcontrib><creatorcontrib>Bahar, Ivet</creatorcontrib><title>Rhapsody: predicting the pathogenicity of human missense variants</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. Results Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase. Availability and implementation The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Documentation</subject><subject>Humans</subject><subject>Original Papers</subject><subject>Software</subject><subject>Virulence</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkFtLxDAQhYMo7nr5C9JHX6pJc-nWB2FZvMGCIPocsul0G2mTmqQL---N7Cr65tMMzDdnzhyELgi-Irii1yvjjG2c71U0OlyvolKkKA_QlDCB8wLz6jD1VJQ5m2E6QSchvGPMCWPsGE1oQXDCyymav7RqCK7e3mSDh9roaOw6iy1kg4qtW4M12sRt5pqsHXtls96EADZAtlHeKBvDGTpqVBfgfF9P0dv93eviMV8-Pzwt5stcMy5iLnChGlwR3TBe1ZSAAIqZYjUnhBcF1zUVnKZeVTi5hKYsK-AMiADCOMzoKbrd6Q7jqodag41edXLwpld-K50y8u_Emlau3UaWBWGY0iRwuRfw7mOEEGX6RUPXKQtuDLJIBkiFmSgTKnao9i4ED83PGYLlV_7yb_5yn39avPht8mftO_AEkB3gxuG_op8G25mY</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ponzoni, Luca</creator><creator>Peñaherrera, Daniel A</creator><creator>Oltvai, Zoltán N</creator><creator>Bahar, Ivet</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9959-4176</orcidid><orcidid>https://orcid.org/0000-0001-8125-582X</orcidid></search><sort><creationdate>20200501</creationdate><title>Rhapsody: predicting the pathogenicity of human missense variants</title><author>Ponzoni, Luca ; Peñaherrera, Daniel A ; Oltvai, Zoltán N ; Bahar, Ivet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Documentation</topic><topic>Humans</topic><topic>Original Papers</topic><topic>Software</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponzoni, Luca</creatorcontrib><creatorcontrib>Peñaherrera, Daniel A</creatorcontrib><creatorcontrib>Oltvai, Zoltán N</creatorcontrib><creatorcontrib>Bahar, Ivet</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponzoni, Luca</au><au>Peñaherrera, Daniel A</au><au>Oltvai, Zoltán N</au><au>Bahar, Ivet</au><au>Ponty, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhapsody: predicting the pathogenicity of human missense variants</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>36</volume><issue>10</issue><spage>3084</spage><epage>3092</epage><pages>3084-3092</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. Results Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase. Availability and implementation The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32101277</pmid><doi>10.1093/bioinformatics/btaa127</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9959-4176</orcidid><orcidid>https://orcid.org/0000-0001-8125-582X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-05, Vol.36 (10), p.3084-3092
issn 1367-4803
1367-4811
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214033
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Computational Biology
Computer Simulation
Documentation
Humans
Original Papers
Software
Virulence
title Rhapsody: predicting the pathogenicity of human missense variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhapsody:%20predicting%20the%20pathogenicity%20of%20human%20missense%20variants&rft.jtitle=Bioinformatics&rft.au=Ponzoni,%20Luca&rft.date=2020-05-01&rft.volume=36&rft.issue=10&rft.spage=3084&rft.epage=3092&rft.pages=3084-3092&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa127&rft_dat=%3Cproquest_pubme%3E2365190467%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365190467&rft_id=info:pmid/32101277&rft_oup_id=10.1093/bioinformatics/btaa127&rfr_iscdi=true