Rhapsody: predicting the pathogenicity of human missense variants
Abstract Motivation The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structur...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-05, Vol.36 (10), p.3084-3092 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3092 |
---|---|
container_issue | 10 |
container_start_page | 3084 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Ponzoni, Luca Peñaherrera, Daniel A Oltvai, Zoltán N Bahar, Ivet |
description | Abstract
Motivation
The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants.
Results
Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.
Availability and implementation
The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btaa127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa127</oup_id><sourcerecordid>2365190467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</originalsourceid><addsrcrecordid>eNqNkFtLxDAQhYMo7nr5C9JHX6pJc-nWB2FZvMGCIPocsul0G2mTmqQL---N7Cr65tMMzDdnzhyELgi-Irii1yvjjG2c71U0OlyvolKkKA_QlDCB8wLz6jD1VJQ5m2E6QSchvGPMCWPsGE1oQXDCyymav7RqCK7e3mSDh9roaOw6iy1kg4qtW4M12sRt5pqsHXtls96EADZAtlHeKBvDGTpqVBfgfF9P0dv93eviMV8-Pzwt5stcMy5iLnChGlwR3TBe1ZSAAIqZYjUnhBcF1zUVnKZeVTi5hKYsK-AMiADCOMzoKbrd6Q7jqodag41edXLwpld-K50y8u_Emlau3UaWBWGY0iRwuRfw7mOEEGX6RUPXKQtuDLJIBkiFmSgTKnao9i4ED83PGYLlV_7yb_5yn39avPht8mftO_AEkB3gxuG_op8G25mY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365190467</pqid></control><display><type>article</type><title>Rhapsody: predicting the pathogenicity of human missense variants</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ponzoni, Luca ; Peñaherrera, Daniel A ; Oltvai, Zoltán N ; Bahar, Ivet</creator><contributor>Ponty, Yann</contributor><creatorcontrib>Ponzoni, Luca ; Peñaherrera, Daniel A ; Oltvai, Zoltán N ; Bahar, Ivet ; Ponty, Yann</creatorcontrib><description>Abstract
Motivation
The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants.
Results
Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.
Availability and implementation
The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa127</identifier><identifier>PMID: 32101277</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; Computer Simulation ; Documentation ; Humans ; Original Papers ; Software ; Virulence</subject><ispartof>Bioinformatics, 2020-05, Vol.36 (10), p.3084-3092</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</citedby><cites>FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</cites><orcidid>0000-0001-9959-4176 ; 0000-0001-8125-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32101277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ponty, Yann</contributor><creatorcontrib>Ponzoni, Luca</creatorcontrib><creatorcontrib>Peñaherrera, Daniel A</creatorcontrib><creatorcontrib>Oltvai, Zoltán N</creatorcontrib><creatorcontrib>Bahar, Ivet</creatorcontrib><title>Rhapsody: predicting the pathogenicity of human missense variants</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants.
Results
Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.
Availability and implementation
The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Documentation</subject><subject>Humans</subject><subject>Original Papers</subject><subject>Software</subject><subject>Virulence</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkFtLxDAQhYMo7nr5C9JHX6pJc-nWB2FZvMGCIPocsul0G2mTmqQL---N7Cr65tMMzDdnzhyELgi-Irii1yvjjG2c71U0OlyvolKkKA_QlDCB8wLz6jD1VJQ5m2E6QSchvGPMCWPsGE1oQXDCyymav7RqCK7e3mSDh9roaOw6iy1kg4qtW4M12sRt5pqsHXtls96EADZAtlHeKBvDGTpqVBfgfF9P0dv93eviMV8-Pzwt5stcMy5iLnChGlwR3TBe1ZSAAIqZYjUnhBcF1zUVnKZeVTi5hKYsK-AMiADCOMzoKbrd6Q7jqodag41edXLwpld-K50y8u_Emlau3UaWBWGY0iRwuRfw7mOEEGX6RUPXKQtuDLJIBkiFmSgTKnao9i4ED83PGYLlV_7yb_5yn39avPht8mftO_AEkB3gxuG_op8G25mY</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ponzoni, Luca</creator><creator>Peñaherrera, Daniel A</creator><creator>Oltvai, Zoltán N</creator><creator>Bahar, Ivet</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9959-4176</orcidid><orcidid>https://orcid.org/0000-0001-8125-582X</orcidid></search><sort><creationdate>20200501</creationdate><title>Rhapsody: predicting the pathogenicity of human missense variants</title><author>Ponzoni, Luca ; Peñaherrera, Daniel A ; Oltvai, Zoltán N ; Bahar, Ivet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-602af091cf459d31e6e304a4d5115225cd3653115a90144ef779e54e16e145e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Documentation</topic><topic>Humans</topic><topic>Original Papers</topic><topic>Software</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponzoni, Luca</creatorcontrib><creatorcontrib>Peñaherrera, Daniel A</creatorcontrib><creatorcontrib>Oltvai, Zoltán N</creatorcontrib><creatorcontrib>Bahar, Ivet</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponzoni, Luca</au><au>Peñaherrera, Daniel A</au><au>Oltvai, Zoltán N</au><au>Bahar, Ivet</au><au>Ponty, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhapsody: predicting the pathogenicity of human missense variants</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>36</volume><issue>10</issue><spage>3084</spage><epage>3092</epage><pages>3084-3092</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants.
Results
Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.
Availability and implementation
The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32101277</pmid><doi>10.1093/bioinformatics/btaa127</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9959-4176</orcidid><orcidid>https://orcid.org/0000-0001-8125-582X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-05, Vol.36 (10), p.3084-3092 |
issn | 1367-4803 1367-4811 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214033 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Computational Biology Computer Simulation Documentation Humans Original Papers Software Virulence |
title | Rhapsody: predicting the pathogenicity of human missense variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhapsody:%20predicting%20the%20pathogenicity%20of%20human%20missense%20variants&rft.jtitle=Bioinformatics&rft.au=Ponzoni,%20Luca&rft.date=2020-05-01&rft.volume=36&rft.issue=10&rft.spage=3084&rft.epage=3092&rft.pages=3084-3092&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa127&rft_dat=%3Cproquest_pubme%3E2365190467%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365190467&rft_id=info:pmid/32101277&rft_oup_id=10.1093/bioinformatics/btaa127&rfr_iscdi=true |