Designing precision medicine trials to yield a greater population impact

Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2020-06, Vol.76 (2), p.643-653
Hauptverfasser: Zhao, Ying‐Qi, LeBlanc, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 2
container_start_page 643
container_title Biometrics
container_volume 76
creator Zhao, Ying‐Qi
LeBlanc, Michael L.
description Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.
doi_str_mv 10.1111/biom.13161
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7211185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303745934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOo5ufAApuBGhY669bAQdr6C4UXAX0vR0jLRNTVpl3t6Mo4O6MJtDOB8ff_IjtEfwhIRzXBjbTAgjCVlDIyI4iTGneB2NMMZJzDh52kLb3r-Eay4w3URbjIg8yxM-Qtfn4M2sNe0s6hxo441towZKo00LUe-Mqn3U22huoC4jFc0cqB5c1NluqFW_oE3TKd3voI0qsLD7Ncfo8fLiYXod395f3UxPb2PNeUZiQSugNCt0wXHOihJKpVPOWYWTNKs4o1Wh0jxPcp2QjBFciVQkFSlKQXUmOLAxOll6u6EIOTW0vVO17JxplJtLq4z8vWnNs5zZN5nS8FeZCILDL4GzrwP4XjbGa6hr1YIdvKQMs5SLnPGAHvxBX-zg2vA8STmhmLMkXQiPlpR21nsH1SoMwXJRkFwUJD8LCvD-z_gr9LuRAJAl8G5qmP-jkmc393dL6QeqU5uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412043675</pqid></control><display><type>article</type><title>Designing precision medicine trials to yield a greater population impact</title><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Zhao, Ying‐Qi ; LeBlanc, Michael L.</creator><creatorcontrib>Zhao, Ying‐Qi ; LeBlanc, Michael L.</creatorcontrib><description>Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13161</identifier><identifier>PMID: 31598964</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Biomarkers ; Clinical trials ; Computer simulation ; Design ; Optimization ; Patients ; population impact ; Precision medicine ; targeted clinical trial design</subject><ispartof>Biometrics, 2020-06, Vol.76 (2), p.643-653</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</citedby><cites>FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</cites><orcidid>0000-0002-2851-2257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31598964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ying‐Qi</creatorcontrib><creatorcontrib>LeBlanc, Michael L.</creatorcontrib><title>Designing precision medicine trials to yield a greater population impact</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Clinical trials</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Optimization</subject><subject>Patients</subject><subject>population impact</subject><subject>Precision medicine</subject><subject>targeted clinical trial design</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhoMoOo5ufAApuBGhY669bAQdr6C4UXAX0vR0jLRNTVpl3t6Mo4O6MJtDOB8ff_IjtEfwhIRzXBjbTAgjCVlDIyI4iTGneB2NMMZJzDh52kLb3r-Eay4w3URbjIg8yxM-Qtfn4M2sNe0s6hxo441towZKo00LUe-Mqn3U22huoC4jFc0cqB5c1NluqFW_oE3TKd3voI0qsLD7Ncfo8fLiYXod395f3UxPb2PNeUZiQSugNCt0wXHOihJKpVPOWYWTNKs4o1Wh0jxPcp2QjBFciVQkFSlKQXUmOLAxOll6u6EIOTW0vVO17JxplJtLq4z8vWnNs5zZN5nS8FeZCILDL4GzrwP4XjbGa6hr1YIdvKQMs5SLnPGAHvxBX-zg2vA8STmhmLMkXQiPlpR21nsH1SoMwXJRkFwUJD8LCvD-z_gr9LuRAJAl8G5qmP-jkmc393dL6QeqU5uQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zhao, Ying‐Qi</creator><creator>LeBlanc, Michael L.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2851-2257</orcidid></search><sort><creationdate>202006</creationdate><title>Designing precision medicine trials to yield a greater population impact</title><author>Zhao, Ying‐Qi ; LeBlanc, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Clinical trials</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Optimization</topic><topic>Patients</topic><topic>population impact</topic><topic>Precision medicine</topic><topic>targeted clinical trial design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ying‐Qi</creatorcontrib><creatorcontrib>LeBlanc, Michael L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ying‐Qi</au><au>LeBlanc, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing precision medicine trials to yield a greater population impact</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-06</date><risdate>2020</risdate><volume>76</volume><issue>2</issue><spage>643</spage><epage>653</epage><pages>643-653</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31598964</pmid><doi>10.1111/biom.13161</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2851-2257</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2020-06, Vol.76 (2), p.643-653
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7211185
source Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Biomarkers
Clinical trials
Computer simulation
Design
Optimization
Patients
population impact
Precision medicine
targeted clinical trial design
title Designing precision medicine trials to yield a greater population impact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20precision%20medicine%20trials%20to%20yield%20a%20greater%20population%20impact&rft.jtitle=Biometrics&rft.au=Zhao,%20Ying%E2%80%90Qi&rft.date=2020-06&rft.volume=76&rft.issue=2&rft.spage=643&rft.epage=653&rft.pages=643-653&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13161&rft_dat=%3Cproquest_pubme%3E2303745934%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412043675&rft_id=info:pmid/31598964&rfr_iscdi=true