Designing precision medicine trials to yield a greater population impact
Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasi...
Gespeichert in:
Veröffentlicht in: | Biometrics 2020-06, Vol.76 (2), p.643-653 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 653 |
---|---|
container_issue | 2 |
container_start_page | 643 |
container_title | Biometrics |
container_volume | 76 |
creator | Zhao, Ying‐Qi LeBlanc, Michael L. |
description | Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs. |
doi_str_mv | 10.1111/biom.13161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7211185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303745934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOo5ufAApuBGhY669bAQdr6C4UXAX0vR0jLRNTVpl3t6Mo4O6MJtDOB8ff_IjtEfwhIRzXBjbTAgjCVlDIyI4iTGneB2NMMZJzDh52kLb3r-Eay4w3URbjIg8yxM-Qtfn4M2sNe0s6hxo441towZKo00LUe-Mqn3U22huoC4jFc0cqB5c1NluqFW_oE3TKd3voI0qsLD7Ncfo8fLiYXod395f3UxPb2PNeUZiQSugNCt0wXHOihJKpVPOWYWTNKs4o1Wh0jxPcp2QjBFciVQkFSlKQXUmOLAxOll6u6EIOTW0vVO17JxplJtLq4z8vWnNs5zZN5nS8FeZCILDL4GzrwP4XjbGa6hr1YIdvKQMs5SLnPGAHvxBX-zg2vA8STmhmLMkXQiPlpR21nsH1SoMwXJRkFwUJD8LCvD-z_gr9LuRAJAl8G5qmP-jkmc393dL6QeqU5uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412043675</pqid></control><display><type>article</type><title>Designing precision medicine trials to yield a greater population impact</title><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Zhao, Ying‐Qi ; LeBlanc, Michael L.</creator><creatorcontrib>Zhao, Ying‐Qi ; LeBlanc, Michael L.</creatorcontrib><description>Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13161</identifier><identifier>PMID: 31598964</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Biomarkers ; Clinical trials ; Computer simulation ; Design ; Optimization ; Patients ; population impact ; Precision medicine ; targeted clinical trial design</subject><ispartof>Biometrics, 2020-06, Vol.76 (2), p.643-653</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</citedby><cites>FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</cites><orcidid>0000-0002-2851-2257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31598964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ying‐Qi</creatorcontrib><creatorcontrib>LeBlanc, Michael L.</creatorcontrib><title>Designing precision medicine trials to yield a greater population impact</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Clinical trials</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Optimization</subject><subject>Patients</subject><subject>population impact</subject><subject>Precision medicine</subject><subject>targeted clinical trial design</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhoMoOo5ufAApuBGhY669bAQdr6C4UXAX0vR0jLRNTVpl3t6Mo4O6MJtDOB8ff_IjtEfwhIRzXBjbTAgjCVlDIyI4iTGneB2NMMZJzDh52kLb3r-Eay4w3URbjIg8yxM-Qtfn4M2sNe0s6hxo441towZKo00LUe-Mqn3U22huoC4jFc0cqB5c1NluqFW_oE3TKd3voI0qsLD7Ncfo8fLiYXod395f3UxPb2PNeUZiQSugNCt0wXHOihJKpVPOWYWTNKs4o1Wh0jxPcp2QjBFciVQkFSlKQXUmOLAxOll6u6EIOTW0vVO17JxplJtLq4z8vWnNs5zZN5nS8FeZCILDL4GzrwP4XjbGa6hr1YIdvKQMs5SLnPGAHvxBX-zg2vA8STmhmLMkXQiPlpR21nsH1SoMwXJRkFwUJD8LCvD-z_gr9LuRAJAl8G5qmP-jkmc393dL6QeqU5uQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zhao, Ying‐Qi</creator><creator>LeBlanc, Michael L.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2851-2257</orcidid></search><sort><creationdate>202006</creationdate><title>Designing precision medicine trials to yield a greater population impact</title><author>Zhao, Ying‐Qi ; LeBlanc, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-52fe228bcb4093bdedac7443f0678f432fba79969c618310f5756f1bd52c854e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Clinical trials</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Optimization</topic><topic>Patients</topic><topic>population impact</topic><topic>Precision medicine</topic><topic>targeted clinical trial design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ying‐Qi</creatorcontrib><creatorcontrib>LeBlanc, Michael L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ying‐Qi</au><au>LeBlanc, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing precision medicine trials to yield a greater population impact</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-06</date><risdate>2020</risdate><volume>76</volume><issue>2</issue><spage>643</spage><epage>653</epage><pages>643-653</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31598964</pmid><doi>10.1111/biom.13161</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2851-2257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2020-06, Vol.76 (2), p.643-653 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7211185 |
source | Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current) |
subjects | Algorithms Biomarkers Clinical trials Computer simulation Design Optimization Patients population impact Precision medicine targeted clinical trial design |
title | Designing precision medicine trials to yield a greater population impact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20precision%20medicine%20trials%20to%20yield%20a%20greater%20population%20impact&rft.jtitle=Biometrics&rft.au=Zhao,%20Ying%E2%80%90Qi&rft.date=2020-06&rft.volume=76&rft.issue=2&rft.spage=643&rft.epage=653&rft.pages=643-653&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13161&rft_dat=%3Cproquest_pubme%3E2303745934%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412043675&rft_id=info:pmid/31598964&rfr_iscdi=true |