Designing precision medicine trials to yield a greater population impact

Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2020-06, Vol.76 (2), p.643-653
Hauptverfasser: Zhao, Ying‐Qi, LeBlanc, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.
ISSN:0006-341X
1541-0420
DOI:10.1111/biom.13161