SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps
Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal ax...
Gespeichert in:
Veröffentlicht in: | Journal of the Endocrine Society 2020-05, Vol.4 (Supplement_1) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Supplement_1 |
container_start_page | |
container_title | Journal of the Endocrine Society |
container_volume | 4 |
creator | Hanchate, Naresh Lee, Eun Jeong Ellis, Andria Kondoh, Kunio Kuang, Donghui Basom, Ryan Trapnell, Cole Buck, Linda |
description | Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits. |
doi_str_mv | 10.1210/jendso/bvaa046.2259 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1449-df506d1cda719e8759a469579d7c70b3970961a1aa26056c16dc6ab44c7016e23</originalsourceid><addsrcrecordid>eNpVkMtqwzAQRUVpoSHNF3SjH3AiybIUbQqp6QvyWKRZi7GktA6O5Up2oH9fB4fSru7AZQ6Xg9A9JVPKKJkdXG2jnxUnAMLFlLFMXaER45IlVEl2_ee-RZMYD4QQqlKuOB-hzXa3TpaPWYZzX9fOtEl0X7j1eNs1LpTHxkeHV75ypqsgYF_jRQ2tP5YGKrx2XegjL4PpyhavoIl36GYPVXSTS47R7vnpPX9NlpuXt3yxTAzlXCV2nxFhqbEgqXJzmSngQmVSWWkkKVIliRIUKAATJBOGCmsEFJz3LRWOpWP0MHCbrjg6a1zd9lN000-G8K09lPp_U5ef-sOftGRkrpjsAekAMMHHGNz-95cSffaqB6_64lWfvaY_lgBuzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Hanchate, Naresh ; Lee, Eun Jeong ; Ellis, Andria ; Kondoh, Kunio ; Kuang, Donghui ; Basom, Ryan ; Trapnell, Cole ; Buck, Linda</creator><creatorcontrib>Hanchate, Naresh ; Lee, Eun Jeong ; Ellis, Andria ; Kondoh, Kunio ; Kuang, Donghui ; Basom, Ryan ; Trapnell, Cole ; Buck, Linda</creatorcontrib><description>Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.</description><identifier>ISSN: 2472-1972</identifier><identifier>EISSN: 2472-1972</identifier><identifier>DOI: 10.1210/jendso/bvaa046.2259</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Neuroendocrinology and Pituitary</subject><ispartof>Journal of the Endocrine Society, 2020-05, Vol.4 (Supplement_1)</ispartof><rights>Endocrine Society 2020. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Hanchate, Naresh</creatorcontrib><creatorcontrib>Lee, Eun Jeong</creatorcontrib><creatorcontrib>Ellis, Andria</creatorcontrib><creatorcontrib>Kondoh, Kunio</creatorcontrib><creatorcontrib>Kuang, Donghui</creatorcontrib><creatorcontrib>Basom, Ryan</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Buck, Linda</creatorcontrib><title>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</title><title>Journal of the Endocrine Society</title><description>Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.</description><subject>Neuroendocrinology and Pituitary</subject><issn>2472-1972</issn><issn>2472-1972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkMtqwzAQRUVpoSHNF3SjH3AiybIUbQqp6QvyWKRZi7GktA6O5Up2oH9fB4fSru7AZQ6Xg9A9JVPKKJkdXG2jnxUnAMLFlLFMXaER45IlVEl2_ee-RZMYD4QQqlKuOB-hzXa3TpaPWYZzX9fOtEl0X7j1eNs1LpTHxkeHV75ypqsgYF_jRQ2tP5YGKrx2XegjL4PpyhavoIl36GYPVXSTS47R7vnpPX9NlpuXt3yxTAzlXCV2nxFhqbEgqXJzmSngQmVSWWkkKVIliRIUKAATJBOGCmsEFJz3LRWOpWP0MHCbrjg6a1zd9lN000-G8K09lPp_U5ef-sOftGRkrpjsAekAMMHHGNz-95cSffaqB6_64lWfvaY_lgBuzQ</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Hanchate, Naresh</creator><creator>Lee, Eun Jeong</creator><creator>Ellis, Andria</creator><creator>Kondoh, Kunio</creator><creator>Kuang, Donghui</creator><creator>Basom, Ryan</creator><creator>Trapnell, Cole</creator><creator>Buck, Linda</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200508</creationdate><title>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</title><author>Hanchate, Naresh ; Lee, Eun Jeong ; Ellis, Andria ; Kondoh, Kunio ; Kuang, Donghui ; Basom, Ryan ; Trapnell, Cole ; Buck, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1449-df506d1cda719e8759a469579d7c70b3970961a1aa26056c16dc6ab44c7016e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Neuroendocrinology and Pituitary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanchate, Naresh</creatorcontrib><creatorcontrib>Lee, Eun Jeong</creatorcontrib><creatorcontrib>Ellis, Andria</creatorcontrib><creatorcontrib>Kondoh, Kunio</creatorcontrib><creatorcontrib>Kuang, Donghui</creatorcontrib><creatorcontrib>Basom, Ryan</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Buck, Linda</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Endocrine Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanchate, Naresh</au><au>Lee, Eun Jeong</au><au>Ellis, Andria</au><au>Kondoh, Kunio</au><au>Kuang, Donghui</au><au>Basom, Ryan</au><au>Trapnell, Cole</au><au>Buck, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</atitle><jtitle>Journal of the Endocrine Society</jtitle><date>2020-05-08</date><risdate>2020</risdate><volume>4</volume><issue>Supplement_1</issue><issn>2472-1972</issn><eissn>2472-1972</eissn><abstract>Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.</abstract><cop>US</cop><pub>Oxford University Press</pub><doi>10.1210/jendso/bvaa046.2259</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-1972 |
ispartof | Journal of the Endocrine Society, 2020-05, Vol.4 (Supplement_1) |
issn | 2472-1972 2472-1972 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | Neuroendocrinology and Pituitary |
title | SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUN-LB55%20Connect-seq%20to%20Superimpose%20Molecular%20on%20Anatomical%20Neural%20Circuit%20Maps&rft.jtitle=Journal%20of%20the%20Endocrine%20Society&rft.au=Hanchate,%20Naresh&rft.date=2020-05-08&rft.volume=4&rft.issue=Supplement_1&rft.issn=2472-1972&rft.eissn=2472-1972&rft_id=info:doi/10.1210/jendso/bvaa046.2259&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |