SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps

Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal ax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Endocrine Society 2020-05, Vol.4 (Supplement_1)
Hauptverfasser: Hanchate, Naresh, Lee, Eun Jeong, Ellis, Andria, Kondoh, Kunio, Kuang, Donghui, Basom, Ryan, Trapnell, Cole, Buck, Linda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page
container_title Journal of the Endocrine Society
container_volume 4
creator Hanchate, Naresh
Lee, Eun Jeong
Ellis, Andria
Kondoh, Kunio
Kuang, Donghui
Basom, Ryan
Trapnell, Cole
Buck, Linda
description Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.
doi_str_mv 10.1210/jendso/bvaa046.2259
format Article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1449-df506d1cda719e8759a469579d7c70b3970961a1aa26056c16dc6ab44c7016e23</originalsourceid><addsrcrecordid>eNpVkMtqwzAQRUVpoSHNF3SjH3AiybIUbQqp6QvyWKRZi7GktA6O5Up2oH9fB4fSru7AZQ6Xg9A9JVPKKJkdXG2jnxUnAMLFlLFMXaER45IlVEl2_ee-RZMYD4QQqlKuOB-hzXa3TpaPWYZzX9fOtEl0X7j1eNs1LpTHxkeHV75ypqsgYF_jRQ2tP5YGKrx2XegjL4PpyhavoIl36GYPVXSTS47R7vnpPX9NlpuXt3yxTAzlXCV2nxFhqbEgqXJzmSngQmVSWWkkKVIliRIUKAATJBOGCmsEFJz3LRWOpWP0MHCbrjg6a1zd9lN000-G8K09lPp_U5ef-sOftGRkrpjsAekAMMHHGNz-95cSffaqB6_64lWfvaY_lgBuzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Hanchate, Naresh ; Lee, Eun Jeong ; Ellis, Andria ; Kondoh, Kunio ; Kuang, Donghui ; Basom, Ryan ; Trapnell, Cole ; Buck, Linda</creator><creatorcontrib>Hanchate, Naresh ; Lee, Eun Jeong ; Ellis, Andria ; Kondoh, Kunio ; Kuang, Donghui ; Basom, Ryan ; Trapnell, Cole ; Buck, Linda</creatorcontrib><description>Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.</description><identifier>ISSN: 2472-1972</identifier><identifier>EISSN: 2472-1972</identifier><identifier>DOI: 10.1210/jendso/bvaa046.2259</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Neuroendocrinology and Pituitary</subject><ispartof>Journal of the Endocrine Society, 2020-05, Vol.4 (Supplement_1)</ispartof><rights>Endocrine Society 2020. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Hanchate, Naresh</creatorcontrib><creatorcontrib>Lee, Eun Jeong</creatorcontrib><creatorcontrib>Ellis, Andria</creatorcontrib><creatorcontrib>Kondoh, Kunio</creatorcontrib><creatorcontrib>Kuang, Donghui</creatorcontrib><creatorcontrib>Basom, Ryan</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Buck, Linda</creatorcontrib><title>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</title><title>Journal of the Endocrine Society</title><description>Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.</description><subject>Neuroendocrinology and Pituitary</subject><issn>2472-1972</issn><issn>2472-1972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkMtqwzAQRUVpoSHNF3SjH3AiybIUbQqp6QvyWKRZi7GktA6O5Up2oH9fB4fSru7AZQ6Xg9A9JVPKKJkdXG2jnxUnAMLFlLFMXaER45IlVEl2_ee-RZMYD4QQqlKuOB-hzXa3TpaPWYZzX9fOtEl0X7j1eNs1LpTHxkeHV75ypqsgYF_jRQ2tP5YGKrx2XegjL4PpyhavoIl36GYPVXSTS47R7vnpPX9NlpuXt3yxTAzlXCV2nxFhqbEgqXJzmSngQmVSWWkkKVIliRIUKAATJBOGCmsEFJz3LRWOpWP0MHCbrjg6a1zd9lN000-G8K09lPp_U5ef-sOftGRkrpjsAekAMMHHGNz-95cSffaqB6_64lWfvaY_lgBuzQ</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Hanchate, Naresh</creator><creator>Lee, Eun Jeong</creator><creator>Ellis, Andria</creator><creator>Kondoh, Kunio</creator><creator>Kuang, Donghui</creator><creator>Basom, Ryan</creator><creator>Trapnell, Cole</creator><creator>Buck, Linda</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200508</creationdate><title>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</title><author>Hanchate, Naresh ; Lee, Eun Jeong ; Ellis, Andria ; Kondoh, Kunio ; Kuang, Donghui ; Basom, Ryan ; Trapnell, Cole ; Buck, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1449-df506d1cda719e8759a469579d7c70b3970961a1aa26056c16dc6ab44c7016e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Neuroendocrinology and Pituitary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanchate, Naresh</creatorcontrib><creatorcontrib>Lee, Eun Jeong</creatorcontrib><creatorcontrib>Ellis, Andria</creatorcontrib><creatorcontrib>Kondoh, Kunio</creatorcontrib><creatorcontrib>Kuang, Donghui</creatorcontrib><creatorcontrib>Basom, Ryan</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Buck, Linda</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Endocrine Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanchate, Naresh</au><au>Lee, Eun Jeong</au><au>Ellis, Andria</au><au>Kondoh, Kunio</au><au>Kuang, Donghui</au><au>Basom, Ryan</au><au>Trapnell, Cole</au><au>Buck, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps</atitle><jtitle>Journal of the Endocrine Society</jtitle><date>2020-05-08</date><risdate>2020</risdate><volume>4</volume><issue>Supplement_1</issue><issn>2472-1972</issn><eissn>2472-1972</eissn><abstract>Animals exhibit instinctive behavioral and physiological responses to a variety of stressors to overcome danger and restore homeostasis. The physiological response to stress is governed by hypothalamic corticotropin-releasing hormone (CRH) neurons which regulate the hypothalamic-pituitary-adrenal axis to control blood levels of stress hormones. At present, the neural circuits and signaling mechanisms through which different stress signals are transmitted to CRH neurons are poorly understood. Here, we devised a new method, termed “Connect-Seq,” which couples single-cell transcriptomics and retrograde viral tracing to define the molecular identities of individual neurons in neural circuits. As a proof of concept, using Connect-Seq, we profiled single-cell transcriptomes of 124 brain neurons upstream of CRH neurons and identified subpopulations that are likely to communicate stress-related signals to CRH neurons. Analyses of single-cell transcriptomes for ‘fast-acting’ neurotransmitters revealed subsets of upstream neurons that expressed markers of inhibitory GABAergic neurons or excitatory glutamatergic neurons. Further analyses showed a number of other neuromodulators/neurotransmitters in upstream neurons, including acetylcholine, dopamine, histamine, and 43 different neuropeptides, each expressed in individual neurons or subsets of neurons. These findings reveal extreme molecular heterogeneity among upstream neurons and suggest the upstream neurons use diverse neurochemical messengers to transmit signals to CRH neurons. Many neurons coexpressed different neurotransmitters/neuromodulators, suggesting the co-release of neurochemical messengers. Dual labeling of brain sections verified expression of specific neuromodulators in virus-infected neurons upstream of CRH neurons in selected brain areas. Our results indicate that Connect-Seq can be applied to genetically dissect neural circuits and uncover molecular identities of neurons upstream of specific neuronal types of known function. Molecular markers identified in those neurons lay a foundation for the application of cell-specific genetic tools to investigate the functions and physiological significance of diverse neuronal subsets within complex neural circuits.</abstract><cop>US</cop><pub>Oxford University Press</pub><doi>10.1210/jendso/bvaa046.2259</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-1972
ispartof Journal of the Endocrine Society, 2020-05, Vol.4 (Supplement_1)
issn 2472-1972
2472-1972
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Neuroendocrinology and Pituitary
title SUN-LB55 Connect-seq to Superimpose Molecular on Anatomical Neural Circuit Maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUN-LB55%20Connect-seq%20to%20Superimpose%20Molecular%20on%20Anatomical%20Neural%20Circuit%20Maps&rft.jtitle=Journal%20of%20the%20Endocrine%20Society&rft.au=Hanchate,%20Naresh&rft.date=2020-05-08&rft.volume=4&rft.issue=Supplement_1&rft.issn=2472-1972&rft.eissn=2472-1972&rft_id=info:doi/10.1210/jendso/bvaa046.2259&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_7208927%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true