Long non‐coding RNA‐H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA‐149/SDF‐1 axis

Bone defects resulting from non‐union fractures or tumour resections are common clinical problems. Long non‐coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA‐H19 in osteogenic differentiation of bone marrow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2020-05, Vol.24 (9), p.4944-4955
Hauptverfasser: Li, Guangjie, Yun, Xiangdong, Ye, Kaishan, Zhao, Haiyan, An, Jiangdong, Zhang, Xueliang, Han, Xingwen, Li, Yanhong, Wang, Shuanke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4955
container_issue 9
container_start_page 4944
container_title Journal of cellular and molecular medicine
container_volume 24
creator Li, Guangjie
Yun, Xiangdong
Ye, Kaishan
Zhao, Haiyan
An, Jiangdong
Zhang, Xueliang
Han, Xingwen
Li, Yanhong
Wang, Shuanke
description Bone defects resulting from non‐union fractures or tumour resections are common clinical problems. Long non‐coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA‐H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Following the establishment of an osteogenic differentiation model in rats, the expression of H19, microRNA‐149 (miR‐149) and stromal cell‐derived factor‐1 (SDF‐1) was measured by RT‐qPCR. Thereafter, BMMSCs were isolated from rats and treated with a series of mimic, inhibitor or siRNA. SDF‐1 expression, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were detected. The mineralized and calcified nodules were assessed by alizarin red S and Von Kossa staining. BMMSC surface markers were detected by flow cytometry. Western blot analysis was used to measure the expression of ALP, OCN, runt‐related transcription factor 2 (RUNX2) and osterix (OSX) proteins. Lastly, dual‐luciferase reporter gene assay and RNA immunoprecipitation were applied to verify the relationship of H19, miR‐149 and SDF‐1. Overexpressed H19 and SDF‐1 and poorly expressed miR‐149 were found in rats with osteogenic differentiation. H19 increased SDF‐1 expression by binding to miR‐149. H19 enhanced ALP activity, OCN content, calcium deposit and ALP, OCN, RUNX2 and OSX protein expression of BMMSCS by up‐regulating SDF‐1 via binding to miR‐149. Taken together, up‐regulated H19 could promote the osteogenic differentiation of BMMSCs by increasing SDF‐1 via miR‐149.
doi_str_mv 10.1111/jcmm.15040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381630810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4480-5207924e1fa1f9e2f072c13ea72e58cb9fbc85df87b19453e0092163903a00903</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqWw4QGQJTYIaVpfOz_2BqkaaEs1BYmfteV4rmc8Suw2Tlpmx55Nn5EnwWmGCljgje-VP517j0-WPQd6COkcbUzbHkJBc_og24dCsFkuef5wV4PgYi97EuOGUl4Cl4-zPc5AClmV-9mPRfAr4oP_-f3WhKVLzacPx6k5A0li79qh0T1GEmKPYYXeGbJ01mKHvne6d8GTYEkdPJJWd124IS1G9Ga9bXWTBLAlBpsmkmunSb9OlDNdmEZALo8-vz0ZK6K_ufg0e2R1E_HZ7j7Ivp68-zI_my0-nr6fHy9mJs8FnRWMVpLlCFaDlcgsrZgBjrpiWAhTS1sbUSytqGqQecGRUsmg5JJynUrKD7I3k-7lULe4NMlKpxt12blkYauCdurvF-_WahWuVcVoIWiVBF7tBLpwNWDsVeviaFN7DENUjIs0jwoYZ738B92EofPJnmIlCOBQSp6o1xOV_ibGDu39MkDVmLEaM1Z3GSf4xZ_r36O_Q00ATMCNa3D7Hyl1Pr-4mER_AQyJtY0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618131693</pqid></control><display><type>article</type><title>Long non‐coding RNA‐H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA‐149/SDF‐1 axis</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Guangjie ; Yun, Xiangdong ; Ye, Kaishan ; Zhao, Haiyan ; An, Jiangdong ; Zhang, Xueliang ; Han, Xingwen ; Li, Yanhong ; Wang, Shuanke</creator><creatorcontrib>Li, Guangjie ; Yun, Xiangdong ; Ye, Kaishan ; Zhao, Haiyan ; An, Jiangdong ; Zhang, Xueliang ; Han, Xingwen ; Li, Yanhong ; Wang, Shuanke</creatorcontrib><description>Bone defects resulting from non‐union fractures or tumour resections are common clinical problems. Long non‐coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA‐H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Following the establishment of an osteogenic differentiation model in rats, the expression of H19, microRNA‐149 (miR‐149) and stromal cell‐derived factor‐1 (SDF‐1) was measured by RT‐qPCR. Thereafter, BMMSCs were isolated from rats and treated with a series of mimic, inhibitor or siRNA. SDF‐1 expression, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were detected. The mineralized and calcified nodules were assessed by alizarin red S and Von Kossa staining. BMMSC surface markers were detected by flow cytometry. Western blot analysis was used to measure the expression of ALP, OCN, runt‐related transcription factor 2 (RUNX2) and osterix (OSX) proteins. Lastly, dual‐luciferase reporter gene assay and RNA immunoprecipitation were applied to verify the relationship of H19, miR‐149 and SDF‐1. Overexpressed H19 and SDF‐1 and poorly expressed miR‐149 were found in rats with osteogenic differentiation. H19 increased SDF‐1 expression by binding to miR‐149. H19 enhanced ALP activity, OCN content, calcium deposit and ALP, OCN, RUNX2 and OSX protein expression of BMMSCS by up‐regulating SDF‐1 via binding to miR‐149. Taken together, up‐regulated H19 could promote the osteogenic differentiation of BMMSCs by increasing SDF‐1 via miR‐149.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15040</identifier><identifier>PMID: 32198976</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animals ; Bone cancer ; bone defects ; Bone marrow ; Bone Marrow Cells - cytology ; bone marrow mesenchymal stem cells ; Bone Regeneration ; Cbfa-1 protein ; Cell Differentiation ; Chemokine CXCL12 - metabolism ; Core Binding Factor Alpha 1 Subunit - metabolism ; Flow cytometry ; Fractures ; Gene Expression Regulation ; Genes, Reporter ; Immunoprecipitation ; Laboratory animals ; long non‐coding RNA‐H19 ; Male ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; MicroRNAs ; MicroRNAs - metabolism ; microRNA‐149 ; miRNA ; Non-coding RNA ; Original ; Osteocalcin ; Osteocalcin - biosynthesis ; Osteogenesis ; osteogenic differentiation ; Polymethyl methacrylate ; Rats ; Rats, Sprague-Dawley ; Reporter gene ; RNA, Long Noncoding - metabolism ; siRNA ; Stem cell transplantation ; Stem cells ; stromal cell‐derived factor‐1 ; Surface markers ; Sutures ; Transcription Factors - metabolism ; Transfection ; Tumors ; Up-Regulation</subject><ispartof>Journal of cellular and molecular medicine, 2020-05, Vol.24 (9), p.4944-4955</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4480-5207924e1fa1f9e2f072c13ea72e58cb9fbc85df87b19453e0092163903a00903</citedby><cites>FETCH-LOGICAL-c4480-5207924e1fa1f9e2f072c13ea72e58cb9fbc85df87b19453e0092163903a00903</cites><orcidid>0000-0002-0446-8327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205807/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205807/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32198976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guangjie</creatorcontrib><creatorcontrib>Yun, Xiangdong</creatorcontrib><creatorcontrib>Ye, Kaishan</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>An, Jiangdong</creatorcontrib><creatorcontrib>Zhang, Xueliang</creatorcontrib><creatorcontrib>Han, Xingwen</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Shuanke</creatorcontrib><title>Long non‐coding RNA‐H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA‐149/SDF‐1 axis</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Bone defects resulting from non‐union fractures or tumour resections are common clinical problems. Long non‐coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA‐H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Following the establishment of an osteogenic differentiation model in rats, the expression of H19, microRNA‐149 (miR‐149) and stromal cell‐derived factor‐1 (SDF‐1) was measured by RT‐qPCR. Thereafter, BMMSCs were isolated from rats and treated with a series of mimic, inhibitor or siRNA. SDF‐1 expression, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were detected. The mineralized and calcified nodules were assessed by alizarin red S and Von Kossa staining. BMMSC surface markers were detected by flow cytometry. Western blot analysis was used to measure the expression of ALP, OCN, runt‐related transcription factor 2 (RUNX2) and osterix (OSX) proteins. Lastly, dual‐luciferase reporter gene assay and RNA immunoprecipitation were applied to verify the relationship of H19, miR‐149 and SDF‐1. Overexpressed H19 and SDF‐1 and poorly expressed miR‐149 were found in rats with osteogenic differentiation. H19 increased SDF‐1 expression by binding to miR‐149. H19 enhanced ALP activity, OCN content, calcium deposit and ALP, OCN, RUNX2 and OSX protein expression of BMMSCS by up‐regulating SDF‐1 via binding to miR‐149. Taken together, up‐regulated H19 could promote the osteogenic differentiation of BMMSCs by increasing SDF‐1 via miR‐149.</description><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Bone cancer</subject><subject>bone defects</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>bone marrow mesenchymal stem cells</subject><subject>Bone Regeneration</subject><subject>Cbfa-1 protein</subject><subject>Cell Differentiation</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Flow cytometry</subject><subject>Fractures</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Immunoprecipitation</subject><subject>Laboratory animals</subject><subject>long non‐coding RNA‐H19</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>MicroRNAs</subject><subject>MicroRNAs - metabolism</subject><subject>microRNA‐149</subject><subject>miRNA</subject><subject>Non-coding RNA</subject><subject>Original</subject><subject>Osteocalcin</subject><subject>Osteocalcin - biosynthesis</subject><subject>Osteogenesis</subject><subject>osteogenic differentiation</subject><subject>Polymethyl methacrylate</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reporter gene</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>siRNA</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>stromal cell‐derived factor‐1</subject><subject>Surface markers</subject><subject>Sutures</subject><subject>Transcription Factors - metabolism</subject><subject>Transfection</subject><subject>Tumors</subject><subject>Up-Regulation</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhSMEoqWw4QGQJTYIaVpfOz_2BqkaaEs1BYmfteV4rmc8Suw2Tlpmx55Nn5EnwWmGCljgje-VP517j0-WPQd6COkcbUzbHkJBc_og24dCsFkuef5wV4PgYi97EuOGUl4Cl4-zPc5AClmV-9mPRfAr4oP_-f3WhKVLzacPx6k5A0li79qh0T1GEmKPYYXeGbJ01mKHvne6d8GTYEkdPJJWd124IS1G9Ga9bXWTBLAlBpsmkmunSb9OlDNdmEZALo8-vz0ZK6K_ufg0e2R1E_HZ7j7Ivp68-zI_my0-nr6fHy9mJs8FnRWMVpLlCFaDlcgsrZgBjrpiWAhTS1sbUSytqGqQecGRUsmg5JJynUrKD7I3k-7lULe4NMlKpxt12blkYauCdurvF-_WahWuVcVoIWiVBF7tBLpwNWDsVeviaFN7DENUjIs0jwoYZ738B92EofPJnmIlCOBQSp6o1xOV_ibGDu39MkDVmLEaM1Z3GSf4xZ_r36O_Q00ATMCNa3D7Hyl1Pr-4mER_AQyJtY0</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Li, Guangjie</creator><creator>Yun, Xiangdong</creator><creator>Ye, Kaishan</creator><creator>Zhao, Haiyan</creator><creator>An, Jiangdong</creator><creator>Zhang, Xueliang</creator><creator>Han, Xingwen</creator><creator>Li, Yanhong</creator><creator>Wang, Shuanke</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0446-8327</orcidid></search><sort><creationdate>202005</creationdate><title>Long non‐coding RNA‐H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA‐149/SDF‐1 axis</title><author>Li, Guangjie ; Yun, Xiangdong ; Ye, Kaishan ; Zhao, Haiyan ; An, Jiangdong ; Zhang, Xueliang ; Han, Xingwen ; Li, Yanhong ; Wang, Shuanke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4480-5207924e1fa1f9e2f072c13ea72e58cb9fbc85df87b19453e0092163903a00903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Bone cancer</topic><topic>bone defects</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>bone marrow mesenchymal stem cells</topic><topic>Bone Regeneration</topic><topic>Cbfa-1 protein</topic><topic>Cell Differentiation</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Flow cytometry</topic><topic>Fractures</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Immunoprecipitation</topic><topic>Laboratory animals</topic><topic>long non‐coding RNA‐H19</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>MicroRNAs</topic><topic>MicroRNAs - metabolism</topic><topic>microRNA‐149</topic><topic>miRNA</topic><topic>Non-coding RNA</topic><topic>Original</topic><topic>Osteocalcin</topic><topic>Osteocalcin - biosynthesis</topic><topic>Osteogenesis</topic><topic>osteogenic differentiation</topic><topic>Polymethyl methacrylate</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reporter gene</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>siRNA</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>stromal cell‐derived factor‐1</topic><topic>Surface markers</topic><topic>Sutures</topic><topic>Transcription Factors - metabolism</topic><topic>Transfection</topic><topic>Tumors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guangjie</creatorcontrib><creatorcontrib>Yun, Xiangdong</creatorcontrib><creatorcontrib>Ye, Kaishan</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>An, Jiangdong</creatorcontrib><creatorcontrib>Zhang, Xueliang</creatorcontrib><creatorcontrib>Han, Xingwen</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Shuanke</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guangjie</au><au>Yun, Xiangdong</au><au>Ye, Kaishan</au><au>Zhao, Haiyan</au><au>An, Jiangdong</au><au>Zhang, Xueliang</au><au>Han, Xingwen</au><au>Li, Yanhong</au><au>Wang, Shuanke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non‐coding RNA‐H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA‐149/SDF‐1 axis</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-05</date><risdate>2020</risdate><volume>24</volume><issue>9</issue><spage>4944</spage><epage>4955</epage><pages>4944-4955</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Bone defects resulting from non‐union fractures or tumour resections are common clinical problems. Long non‐coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA‐H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Following the establishment of an osteogenic differentiation model in rats, the expression of H19, microRNA‐149 (miR‐149) and stromal cell‐derived factor‐1 (SDF‐1) was measured by RT‐qPCR. Thereafter, BMMSCs were isolated from rats and treated with a series of mimic, inhibitor or siRNA. SDF‐1 expression, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were detected. The mineralized and calcified nodules were assessed by alizarin red S and Von Kossa staining. BMMSC surface markers were detected by flow cytometry. Western blot analysis was used to measure the expression of ALP, OCN, runt‐related transcription factor 2 (RUNX2) and osterix (OSX) proteins. Lastly, dual‐luciferase reporter gene assay and RNA immunoprecipitation were applied to verify the relationship of H19, miR‐149 and SDF‐1. Overexpressed H19 and SDF‐1 and poorly expressed miR‐149 were found in rats with osteogenic differentiation. H19 increased SDF‐1 expression by binding to miR‐149. H19 enhanced ALP activity, OCN content, calcium deposit and ALP, OCN, RUNX2 and OSX protein expression of BMMSCS by up‐regulating SDF‐1 via binding to miR‐149. Taken together, up‐regulated H19 could promote the osteogenic differentiation of BMMSCs by increasing SDF‐1 via miR‐149.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32198976</pmid><doi>10.1111/jcmm.15040</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0446-8327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2020-05, Vol.24 (9), p.4944-4955
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7205807
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Alkaline phosphatase
Alkaline Phosphatase - metabolism
Animals
Bone cancer
bone defects
Bone marrow
Bone Marrow Cells - cytology
bone marrow mesenchymal stem cells
Bone Regeneration
Cbfa-1 protein
Cell Differentiation
Chemokine CXCL12 - metabolism
Core Binding Factor Alpha 1 Subunit - metabolism
Flow cytometry
Fractures
Gene Expression Regulation
Genes, Reporter
Immunoprecipitation
Laboratory animals
long non‐coding RNA‐H19
Male
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
MicroRNAs
MicroRNAs - metabolism
microRNA‐149
miRNA
Non-coding RNA
Original
Osteocalcin
Osteocalcin - biosynthesis
Osteogenesis
osteogenic differentiation
Polymethyl methacrylate
Rats
Rats, Sprague-Dawley
Reporter gene
RNA, Long Noncoding - metabolism
siRNA
Stem cell transplantation
Stem cells
stromal cell‐derived factor‐1
Surface markers
Sutures
Transcription Factors - metabolism
Transfection
Tumors
Up-Regulation
title Long non‐coding RNA‐H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA‐149/SDF‐1 axis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non%E2%80%90coding%20RNA%E2%80%90H19%20stimulates%20osteogenic%20differentiation%20of%20bone%20marrow%20mesenchymal%20stem%20cells%20via%20the%20microRNA%E2%80%90149/SDF%E2%80%901%20axis&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Li,%20Guangjie&rft.date=2020-05&rft.volume=24&rft.issue=9&rft.spage=4944&rft.epage=4955&rft.pages=4944-4955&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15040&rft_dat=%3Cproquest_pubme%3E2381630810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618131693&rft_id=info:pmid/32198976&rfr_iscdi=true