A brain–computer interface for the continuous, real-time monitoring of working memory load in real-world environments

We developed a brain–computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive neurodynamics 2020-06, Vol.14 (3), p.301-321
Hauptverfasser: Mora-Sánchez, Aldo, Pulini, Alfredo-Aram, Gaume, Antoine, Dreyfus, Gérard, Vialatte, François-Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 3
container_start_page 301
container_title Cognitive neurodynamics
container_volume 14
creator Mora-Sánchez, Aldo
Pulini, Alfredo-Aram
Gaume, Antoine
Dreyfus, Gérard
Vialatte, François-Benoît
description We developed a brain–computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a linear discriminant analysis classifier. The BCI was trained on a visual WM task, tested in a real-time visual WM task, and further validated in a real-time cross task (mental arithmetic). Throughout each trial of the cross task, subjects were given real or sham feedback about their WM load. At the end of the trial, subjects were asked whether the feedback provided was real or sham. The high rate of correct answers provided by the subjects validated not only the global behaviour of the WM-load feedback, but also its real-time dynamics. On average, subjects were able to provide a correct answer 82% of the time, with one subject having 100% accuracy. Possible cognitive and motor confounding factors were disentangled to support the claim that our EEG-based markers correspond indeed to WM.
doi_str_mv 10.1007/s11571-020-09573-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402433291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9c1dd599cf60c68b2de70678651bc7733f11a99aed919138298d35598a0c288f3</originalsourceid><addsrcrecordid>eNp9UU1PHSEUJaZNta_9Ay4akm666NQLzAywaWKM1iYmbuya8BhGsQM8YcaPXf-D_9BfUp5jX2sXbuCGc-453HsQ2iXwhQDwvUxIw0kFFCqQDWfV7RbaIaI81SDlq00tYBu9zfkSoGkFqd-gbUaZlMDZDrrZx8ukXXj4dW-iX02jTdiFcvbaWNzHhMcLi00MowtTnPJnnKweqtF5i30MbozJhXMce3wT08916a2P6Q4PUXdFaaYXbOiwDdcuxeBtGPM79LrXQ7bvn-4F-nF0eHZwXJ2cfvt-sH9SmZrXYyUN6bpGStO3YFqxpJ3l0HLRNmRpOGesJ0RLqW0niSRMUCk61jRSaDBUiJ4t0NdZdzUtve1M8U56UKvkvE53KmqnniPBXajzeK04BUbbugh8ehJI8WqyeVTeZWOHQQdb9qFoDbRmjBb3Bfr4H_UyTimU8VSBRSuAlJ0vEJ1ZJsWck-03nyGg1rmqOVdVclWPuarb0vTh3zE2LX-CLAQ2E_JqHYhNf71fkP0NRryx1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918680107</pqid></control><display><type>article</type><title>A brain–computer interface for the continuous, real-time monitoring of working memory load in real-world environments</title><source>Electronic Journals Library</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Mora-Sánchez, Aldo ; Pulini, Alfredo-Aram ; Gaume, Antoine ; Dreyfus, Gérard ; Vialatte, François-Benoît</creator><creatorcontrib>Mora-Sánchez, Aldo ; Pulini, Alfredo-Aram ; Gaume, Antoine ; Dreyfus, Gérard ; Vialatte, François-Benoît</creatorcontrib><description>We developed a brain–computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a linear discriminant analysis classifier. The BCI was trained on a visual WM task, tested in a real-time visual WM task, and further validated in a real-time cross task (mental arithmetic). Throughout each trial of the cross task, subjects were given real or sham feedback about their WM load. At the end of the trial, subjects were asked whether the feedback provided was real or sham. The high rate of correct answers provided by the subjects validated not only the global behaviour of the WM-load feedback, but also its real-time dynamics. On average, subjects were able to provide a correct answer 82% of the time, with one subject having 100% accuracy. Possible cognitive and motor confounding factors were disentangled to support the claim that our EEG-based markers correspond indeed to WM.</description><identifier>ISSN: 1871-4080</identifier><identifier>EISSN: 1871-4099</identifier><identifier>DOI: 10.1007/s11571-020-09573-x</identifier><identifier>PMID: 32399073</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Biochemistry ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cognition &amp; reasoning ; Cognitive ability ; Cognitive load ; Cognitive Psychology ; Communication ; Computer applications ; Computer Science ; Confounding (Statistics) ; Discriminant analysis ; EEG ; Electroencephalography ; Feedback ; Human-computer interface ; Implants ; Mathematics ; Memory ; Neurosciences ; Phonology ; Real time ; Research Article ; Short term memory ; Speech ; Time ; Visual tasks</subject><ispartof>Cognitive neurodynamics, 2020-06, Vol.14 (3), p.301-321</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9c1dd599cf60c68b2de70678651bc7733f11a99aed919138298d35598a0c288f3</citedby><cites>FETCH-LOGICAL-c474t-9c1dd599cf60c68b2de70678651bc7733f11a99aed919138298d35598a0c288f3</cites><orcidid>0000-0002-3456-714X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203264/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918680107?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21367,27901,27902,33721,33722,41464,42533,43781,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32399073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mora-Sánchez, Aldo</creatorcontrib><creatorcontrib>Pulini, Alfredo-Aram</creatorcontrib><creatorcontrib>Gaume, Antoine</creatorcontrib><creatorcontrib>Dreyfus, Gérard</creatorcontrib><creatorcontrib>Vialatte, François-Benoît</creatorcontrib><title>A brain–computer interface for the continuous, real-time monitoring of working memory load in real-world environments</title><title>Cognitive neurodynamics</title><addtitle>Cogn Neurodyn</addtitle><addtitle>Cogn Neurodyn</addtitle><description>We developed a brain–computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a linear discriminant analysis classifier. The BCI was trained on a visual WM task, tested in a real-time visual WM task, and further validated in a real-time cross task (mental arithmetic). Throughout each trial of the cross task, subjects were given real or sham feedback about their WM load. At the end of the trial, subjects were asked whether the feedback provided was real or sham. The high rate of correct answers provided by the subjects validated not only the global behaviour of the WM-load feedback, but also its real-time dynamics. On average, subjects were able to provide a correct answer 82% of the time, with one subject having 100% accuracy. Possible cognitive and motor confounding factors were disentangled to support the claim that our EEG-based markers correspond indeed to WM.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biochemistry</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Cognitive load</subject><subject>Cognitive Psychology</subject><subject>Communication</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Confounding (Statistics)</subject><subject>Discriminant analysis</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feedback</subject><subject>Human-computer interface</subject><subject>Implants</subject><subject>Mathematics</subject><subject>Memory</subject><subject>Neurosciences</subject><subject>Phonology</subject><subject>Real time</subject><subject>Research Article</subject><subject>Short term memory</subject><subject>Speech</subject><subject>Time</subject><subject>Visual tasks</subject><issn>1871-4080</issn><issn>1871-4099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UU1PHSEUJaZNta_9Ay4akm666NQLzAywaWKM1iYmbuya8BhGsQM8YcaPXf-D_9BfUp5jX2sXbuCGc-453HsQ2iXwhQDwvUxIw0kFFCqQDWfV7RbaIaI81SDlq00tYBu9zfkSoGkFqd-gbUaZlMDZDrrZx8ukXXj4dW-iX02jTdiFcvbaWNzHhMcLi00MowtTnPJnnKweqtF5i30MbozJhXMce3wT08916a2P6Q4PUXdFaaYXbOiwDdcuxeBtGPM79LrXQ7bvn-4F-nF0eHZwXJ2cfvt-sH9SmZrXYyUN6bpGStO3YFqxpJ3l0HLRNmRpOGesJ0RLqW0niSRMUCk61jRSaDBUiJ4t0NdZdzUtve1M8U56UKvkvE53KmqnniPBXajzeK04BUbbugh8ehJI8WqyeVTeZWOHQQdb9qFoDbRmjBb3Bfr4H_UyTimU8VSBRSuAlJ0vEJ1ZJsWck-03nyGg1rmqOVdVclWPuarb0vTh3zE2LX-CLAQ2E_JqHYhNf71fkP0NRryx1A</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mora-Sánchez, Aldo</creator><creator>Pulini, Alfredo-Aram</creator><creator>Gaume, Antoine</creator><creator>Dreyfus, Gérard</creator><creator>Vialatte, François-Benoît</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T9</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3456-714X</orcidid></search><sort><creationdate>20200601</creationdate><title>A brain–computer interface for the continuous, real-time monitoring of working memory load in real-world environments</title><author>Mora-Sánchez, Aldo ; Pulini, Alfredo-Aram ; Gaume, Antoine ; Dreyfus, Gérard ; Vialatte, François-Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9c1dd599cf60c68b2de70678651bc7733f11a99aed919138298d35598a0c288f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biochemistry</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Cognitive load</topic><topic>Cognitive Psychology</topic><topic>Communication</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Confounding (Statistics)</topic><topic>Discriminant analysis</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feedback</topic><topic>Human-computer interface</topic><topic>Implants</topic><topic>Mathematics</topic><topic>Memory</topic><topic>Neurosciences</topic><topic>Phonology</topic><topic>Real time</topic><topic>Research Article</topic><topic>Short term memory</topic><topic>Speech</topic><topic>Time</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mora-Sánchez, Aldo</creatorcontrib><creatorcontrib>Pulini, Alfredo-Aram</creatorcontrib><creatorcontrib>Gaume, Antoine</creatorcontrib><creatorcontrib>Dreyfus, Gérard</creatorcontrib><creatorcontrib>Vialatte, François-Benoît</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cognitive neurodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mora-Sánchez, Aldo</au><au>Pulini, Alfredo-Aram</au><au>Gaume, Antoine</au><au>Dreyfus, Gérard</au><au>Vialatte, François-Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A brain–computer interface for the continuous, real-time monitoring of working memory load in real-world environments</atitle><jtitle>Cognitive neurodynamics</jtitle><stitle>Cogn Neurodyn</stitle><addtitle>Cogn Neurodyn</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>301</spage><epage>321</epage><pages>301-321</pages><issn>1871-4080</issn><eissn>1871-4099</eissn><abstract>We developed a brain–computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a linear discriminant analysis classifier. The BCI was trained on a visual WM task, tested in a real-time visual WM task, and further validated in a real-time cross task (mental arithmetic). Throughout each trial of the cross task, subjects were given real or sham feedback about their WM load. At the end of the trial, subjects were asked whether the feedback provided was real or sham. The high rate of correct answers provided by the subjects validated not only the global behaviour of the WM-load feedback, but also its real-time dynamics. On average, subjects were able to provide a correct answer 82% of the time, with one subject having 100% accuracy. Possible cognitive and motor confounding factors were disentangled to support the claim that our EEG-based markers correspond indeed to WM.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32399073</pmid><doi>10.1007/s11571-020-09573-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3456-714X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1871-4080
ispartof Cognitive neurodynamics, 2020-06, Vol.14 (3), p.301-321
issn 1871-4080
1871-4099
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203264
source Electronic Journals Library; PubMed Central; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Biochemistry
Biomarkers
Biomedical and Life Sciences
Biomedicine
Brain
Cognition & reasoning
Cognitive ability
Cognitive load
Cognitive Psychology
Communication
Computer applications
Computer Science
Confounding (Statistics)
Discriminant analysis
EEG
Electroencephalography
Feedback
Human-computer interface
Implants
Mathematics
Memory
Neurosciences
Phonology
Real time
Research Article
Short term memory
Speech
Time
Visual tasks
title A brain–computer interface for the continuous, real-time monitoring of working memory load in real-world environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20brain%E2%80%93computer%20interface%20for%20the%20continuous,%20real-time%20monitoring%20of%20working%20memory%20load%20in%20real-world%20environments&rft.jtitle=Cognitive%20neurodynamics&rft.au=Mora-S%C3%A1nchez,%20Aldo&rft.date=2020-06-01&rft.volume=14&rft.issue=3&rft.spage=301&rft.epage=321&rft.pages=301-321&rft.issn=1871-4080&rft.eissn=1871-4099&rft_id=info:doi/10.1007/s11571-020-09573-x&rft_dat=%3Cproquest_pubme%3E2402433291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918680107&rft_id=info:pmid/32399073&rfr_iscdi=true