Methylation deficiency disrupts biological rhythms from bacteria to humans

The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-05, Vol.3 (1), p.211-211, Article 211
Hauptverfasser: Fustin, Jean-Michel, Ye, Shiqi, Rakers, Christin, Kaneko, Kensuke, Fukumoto, Kazuki, Yamano, Mayu, Versteven, Marijke, Grünewald, Ellen, Cargill, Samantha J., Tamai, T. Katherine, Xu, Yao, Jabbur, Maria Luísa, Kojima, Rika, Lamberti, Melisa L., Yoshioka-Kobayashi, Kumiko, Whitmore, David, Tammam, Stephanie, Howell, P. Lynne, Kageyama, Ryoichiro, Matsuo, Takuya, Stanewsky, Ralf, Golombek, Diego A., Johnson, Carl Hirschie, Kakeya, Hideaki, van Ooijen, Gerben, Okamura, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 211
container_title Communications biology
container_volume 3
creator Fustin, Jean-Michel
Ye, Shiqi
Rakers, Christin
Kaneko, Kensuke
Fukumoto, Kazuki
Yamano, Mayu
Versteven, Marijke
Grünewald, Ellen
Cargill, Samantha J.
Tamai, T. Katherine
Xu, Yao
Jabbur, Maria Luísa
Kojima, Rika
Lamberti, Melisa L.
Yoshioka-Kobayashi, Kumiko
Whitmore, David
Tammam, Stephanie
Howell, P. Lynne
Kageyama, Ryoichiro
Matsuo, Takuya
Stanewsky, Ralf
Golombek, Diego A.
Johnson, Carl Hirschie
Kakeya, Hideaki
van Ooijen, Gerben
Okamura, Hitoshi
description The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.
doi_str_mv 10.1038/s42003-020-0942-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399210279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-4adeb7dfa24a10d0e201948e3bb79b319227a6c26b8312760c8754cab20f00713</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhi0EKgj2AXqpInHhEjoee-P4Ugmh0lKBuNCzZTvOxiiJt7ZTad-eLEuBInGypfnm94w_Qj5TOKfA6q-JIwArAaEEybGEPXKETMqSVRz339wPySKlBwCgUsqK8U_kkCETlQQ8Ir9uXe42vc4-jEXjWm-9G-2maHyK0zqnwvjQh5W3ui9it8ndkIo2hqEw2mYXvS5yKLpp0GM6IQet7pNbPJ_H5PfV9_vLn-XN3Y_ry4ub0i5ryCXXjTOiaTVyTaEBh_NgvHbMGCENoxJR6MpiZWpGUVRga7HkVhuEFkBQdky-7XLXkxlcY92Yo-7VOvpBx40K2qv_K6Pv1Cr8VQKBAa3ngLPngBj-TC5lNfhkXd_r0YUpqe3P1QxqvkVP36EPYYrjvN4ThRRQyJmiO8rGkFJ07cswFNRWltrJUrMstZWlYO758naLl45_amYAd0CaS-PKxdenP059BIa7n40</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399210279</pqid></control><display><type>article</type><title>Methylation deficiency disrupts biological rhythms from bacteria to humans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Fustin, Jean-Michel ; Ye, Shiqi ; Rakers, Christin ; Kaneko, Kensuke ; Fukumoto, Kazuki ; Yamano, Mayu ; Versteven, Marijke ; Grünewald, Ellen ; Cargill, Samantha J. ; Tamai, T. Katherine ; Xu, Yao ; Jabbur, Maria Luísa ; Kojima, Rika ; Lamberti, Melisa L. ; Yoshioka-Kobayashi, Kumiko ; Whitmore, David ; Tammam, Stephanie ; Howell, P. Lynne ; Kageyama, Ryoichiro ; Matsuo, Takuya ; Stanewsky, Ralf ; Golombek, Diego A. ; Johnson, Carl Hirschie ; Kakeya, Hideaki ; van Ooijen, Gerben ; Okamura, Hitoshi</creator><creatorcontrib>Fustin, Jean-Michel ; Ye, Shiqi ; Rakers, Christin ; Kaneko, Kensuke ; Fukumoto, Kazuki ; Yamano, Mayu ; Versteven, Marijke ; Grünewald, Ellen ; Cargill, Samantha J. ; Tamai, T. Katherine ; Xu, Yao ; Jabbur, Maria Luísa ; Kojima, Rika ; Lamberti, Melisa L. ; Yoshioka-Kobayashi, Kumiko ; Whitmore, David ; Tammam, Stephanie ; Howell, P. Lynne ; Kageyama, Ryoichiro ; Matsuo, Takuya ; Stanewsky, Ralf ; Golombek, Diego A. ; Johnson, Carl Hirschie ; Kakeya, Hideaki ; van Ooijen, Gerben ; Okamura, Hitoshi</creatorcontrib><description>The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0942-0</identifier><identifier>PMID: 32376902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/44 ; 13/51 ; 14 ; 14/5 ; 38 ; 38/71 ; 38/90 ; 42 ; 59 ; 631/181 ; 631/443/319 ; 631/80/105 ; 64 ; 64/11 ; 64/116 ; 64/24 ; 64/60 ; 82/29 ; 82/58 ; 96 ; Algae ; Animals ; Arabidopsis - physiology ; Bacteria ; Biological clocks ; Biological rhythms ; Biology ; Biomedical and Life Sciences ; Caenorhabditis elegans - physiology ; Chlamydomonas reinhardtii - physiology ; Chlorophyta - physiology ; Circadian Rhythm ; Circadian rhythms ; Drosophila melanogaster - physiology ; Evolution ; Humans ; Life Sciences ; Mammalian cells ; Mammals ; Metabolic pathways ; Methylation ; Mice - physiology ; Synechococcus - physiology ; Therapeutic applications ; Zebrafish - physiology</subject><ispartof>Communications biology, 2020-05, Vol.3 (1), p.211-211, Article 211</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-4adeb7dfa24a10d0e201948e3bb79b319227a6c26b8312760c8754cab20f00713</citedby><cites>FETCH-LOGICAL-c580t-4adeb7dfa24a10d0e201948e3bb79b319227a6c26b8312760c8754cab20f00713</cites><orcidid>0000-0002-5668-6844 ; 0000-0002-6200-6075 ; 0000-0002-4293-7331 ; 0000-0001-8238-6864 ; 0000-0001-7967-0637 ; 0000-0003-2420-8220 ; 0000-0002-5538-5206 ; 0000-0002-2776-062X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203018/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203018/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32376902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fustin, Jean-Michel</creatorcontrib><creatorcontrib>Ye, Shiqi</creatorcontrib><creatorcontrib>Rakers, Christin</creatorcontrib><creatorcontrib>Kaneko, Kensuke</creatorcontrib><creatorcontrib>Fukumoto, Kazuki</creatorcontrib><creatorcontrib>Yamano, Mayu</creatorcontrib><creatorcontrib>Versteven, Marijke</creatorcontrib><creatorcontrib>Grünewald, Ellen</creatorcontrib><creatorcontrib>Cargill, Samantha J.</creatorcontrib><creatorcontrib>Tamai, T. Katherine</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Jabbur, Maria Luísa</creatorcontrib><creatorcontrib>Kojima, Rika</creatorcontrib><creatorcontrib>Lamberti, Melisa L.</creatorcontrib><creatorcontrib>Yoshioka-Kobayashi, Kumiko</creatorcontrib><creatorcontrib>Whitmore, David</creatorcontrib><creatorcontrib>Tammam, Stephanie</creatorcontrib><creatorcontrib>Howell, P. Lynne</creatorcontrib><creatorcontrib>Kageyama, Ryoichiro</creatorcontrib><creatorcontrib>Matsuo, Takuya</creatorcontrib><creatorcontrib>Stanewsky, Ralf</creatorcontrib><creatorcontrib>Golombek, Diego A.</creatorcontrib><creatorcontrib>Johnson, Carl Hirschie</creatorcontrib><creatorcontrib>Kakeya, Hideaki</creatorcontrib><creatorcontrib>van Ooijen, Gerben</creatorcontrib><creatorcontrib>Okamura, Hitoshi</creatorcontrib><title>Methylation deficiency disrupts biological rhythms from bacteria to humans</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.</description><subject>13/1</subject><subject>13/109</subject><subject>13/44</subject><subject>13/51</subject><subject>14</subject><subject>14/5</subject><subject>38</subject><subject>38/71</subject><subject>38/90</subject><subject>42</subject><subject>59</subject><subject>631/181</subject><subject>631/443/319</subject><subject>631/80/105</subject><subject>64</subject><subject>64/11</subject><subject>64/116</subject><subject>64/24</subject><subject>64/60</subject><subject>82/29</subject><subject>82/58</subject><subject>96</subject><subject>Algae</subject><subject>Animals</subject><subject>Arabidopsis - physiology</subject><subject>Bacteria</subject><subject>Biological clocks</subject><subject>Biological rhythms</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Chlamydomonas reinhardtii - physiology</subject><subject>Chlorophyta - physiology</subject><subject>Circadian Rhythm</subject><subject>Circadian rhythms</subject><subject>Drosophila melanogaster - physiology</subject><subject>Evolution</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Metabolic pathways</subject><subject>Methylation</subject><subject>Mice - physiology</subject><subject>Synechococcus - physiology</subject><subject>Therapeutic applications</subject><subject>Zebrafish - physiology</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFO3DAQhi0EKgj2AXqpInHhEjoee-P4Ugmh0lKBuNCzZTvOxiiJt7ZTad-eLEuBInGypfnm94w_Qj5TOKfA6q-JIwArAaEEybGEPXKETMqSVRz339wPySKlBwCgUsqK8U_kkCETlQQ8Ir9uXe42vc4-jEXjWm-9G-2maHyK0zqnwvjQh5W3ui9it8ndkIo2hqEw2mYXvS5yKLpp0GM6IQet7pNbPJ_H5PfV9_vLn-XN3Y_ry4ub0i5ryCXXjTOiaTVyTaEBh_NgvHbMGCENoxJR6MpiZWpGUVRga7HkVhuEFkBQdky-7XLXkxlcY92Yo-7VOvpBx40K2qv_K6Pv1Cr8VQKBAa3ngLPngBj-TC5lNfhkXd_r0YUpqe3P1QxqvkVP36EPYYrjvN4ThRRQyJmiO8rGkFJ07cswFNRWltrJUrMstZWlYO758naLl45_amYAd0CaS-PKxdenP059BIa7n40</recordid><startdate>20200506</startdate><enddate>20200506</enddate><creator>Fustin, Jean-Michel</creator><creator>Ye, Shiqi</creator><creator>Rakers, Christin</creator><creator>Kaneko, Kensuke</creator><creator>Fukumoto, Kazuki</creator><creator>Yamano, Mayu</creator><creator>Versteven, Marijke</creator><creator>Grünewald, Ellen</creator><creator>Cargill, Samantha J.</creator><creator>Tamai, T. Katherine</creator><creator>Xu, Yao</creator><creator>Jabbur, Maria Luísa</creator><creator>Kojima, Rika</creator><creator>Lamberti, Melisa L.</creator><creator>Yoshioka-Kobayashi, Kumiko</creator><creator>Whitmore, David</creator><creator>Tammam, Stephanie</creator><creator>Howell, P. Lynne</creator><creator>Kageyama, Ryoichiro</creator><creator>Matsuo, Takuya</creator><creator>Stanewsky, Ralf</creator><creator>Golombek, Diego A.</creator><creator>Johnson, Carl Hirschie</creator><creator>Kakeya, Hideaki</creator><creator>van Ooijen, Gerben</creator><creator>Okamura, Hitoshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5668-6844</orcidid><orcidid>https://orcid.org/0000-0002-6200-6075</orcidid><orcidid>https://orcid.org/0000-0002-4293-7331</orcidid><orcidid>https://orcid.org/0000-0001-8238-6864</orcidid><orcidid>https://orcid.org/0000-0001-7967-0637</orcidid><orcidid>https://orcid.org/0000-0003-2420-8220</orcidid><orcidid>https://orcid.org/0000-0002-5538-5206</orcidid><orcidid>https://orcid.org/0000-0002-2776-062X</orcidid></search><sort><creationdate>20200506</creationdate><title>Methylation deficiency disrupts biological rhythms from bacteria to humans</title><author>Fustin, Jean-Michel ; Ye, Shiqi ; Rakers, Christin ; Kaneko, Kensuke ; Fukumoto, Kazuki ; Yamano, Mayu ; Versteven, Marijke ; Grünewald, Ellen ; Cargill, Samantha J. ; Tamai, T. Katherine ; Xu, Yao ; Jabbur, Maria Luísa ; Kojima, Rika ; Lamberti, Melisa L. ; Yoshioka-Kobayashi, Kumiko ; Whitmore, David ; Tammam, Stephanie ; Howell, P. Lynne ; Kageyama, Ryoichiro ; Matsuo, Takuya ; Stanewsky, Ralf ; Golombek, Diego A. ; Johnson, Carl Hirschie ; Kakeya, Hideaki ; van Ooijen, Gerben ; Okamura, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-4adeb7dfa24a10d0e201948e3bb79b319227a6c26b8312760c8754cab20f00713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/44</topic><topic>13/51</topic><topic>14</topic><topic>14/5</topic><topic>38</topic><topic>38/71</topic><topic>38/90</topic><topic>42</topic><topic>59</topic><topic>631/181</topic><topic>631/443/319</topic><topic>631/80/105</topic><topic>64</topic><topic>64/11</topic><topic>64/116</topic><topic>64/24</topic><topic>64/60</topic><topic>82/29</topic><topic>82/58</topic><topic>96</topic><topic>Algae</topic><topic>Animals</topic><topic>Arabidopsis - physiology</topic><topic>Bacteria</topic><topic>Biological clocks</topic><topic>Biological rhythms</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Chlamydomonas reinhardtii - physiology</topic><topic>Chlorophyta - physiology</topic><topic>Circadian Rhythm</topic><topic>Circadian rhythms</topic><topic>Drosophila melanogaster - physiology</topic><topic>Evolution</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Metabolic pathways</topic><topic>Methylation</topic><topic>Mice - physiology</topic><topic>Synechococcus - physiology</topic><topic>Therapeutic applications</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fustin, Jean-Michel</creatorcontrib><creatorcontrib>Ye, Shiqi</creatorcontrib><creatorcontrib>Rakers, Christin</creatorcontrib><creatorcontrib>Kaneko, Kensuke</creatorcontrib><creatorcontrib>Fukumoto, Kazuki</creatorcontrib><creatorcontrib>Yamano, Mayu</creatorcontrib><creatorcontrib>Versteven, Marijke</creatorcontrib><creatorcontrib>Grünewald, Ellen</creatorcontrib><creatorcontrib>Cargill, Samantha J.</creatorcontrib><creatorcontrib>Tamai, T. Katherine</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Jabbur, Maria Luísa</creatorcontrib><creatorcontrib>Kojima, Rika</creatorcontrib><creatorcontrib>Lamberti, Melisa L.</creatorcontrib><creatorcontrib>Yoshioka-Kobayashi, Kumiko</creatorcontrib><creatorcontrib>Whitmore, David</creatorcontrib><creatorcontrib>Tammam, Stephanie</creatorcontrib><creatorcontrib>Howell, P. Lynne</creatorcontrib><creatorcontrib>Kageyama, Ryoichiro</creatorcontrib><creatorcontrib>Matsuo, Takuya</creatorcontrib><creatorcontrib>Stanewsky, Ralf</creatorcontrib><creatorcontrib>Golombek, Diego A.</creatorcontrib><creatorcontrib>Johnson, Carl Hirschie</creatorcontrib><creatorcontrib>Kakeya, Hideaki</creatorcontrib><creatorcontrib>van Ooijen, Gerben</creatorcontrib><creatorcontrib>Okamura, Hitoshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fustin, Jean-Michel</au><au>Ye, Shiqi</au><au>Rakers, Christin</au><au>Kaneko, Kensuke</au><au>Fukumoto, Kazuki</au><au>Yamano, Mayu</au><au>Versteven, Marijke</au><au>Grünewald, Ellen</au><au>Cargill, Samantha J.</au><au>Tamai, T. Katherine</au><au>Xu, Yao</au><au>Jabbur, Maria Luísa</au><au>Kojima, Rika</au><au>Lamberti, Melisa L.</au><au>Yoshioka-Kobayashi, Kumiko</au><au>Whitmore, David</au><au>Tammam, Stephanie</au><au>Howell, P. Lynne</au><au>Kageyama, Ryoichiro</au><au>Matsuo, Takuya</au><au>Stanewsky, Ralf</au><au>Golombek, Diego A.</au><au>Johnson, Carl Hirschie</au><au>Kakeya, Hideaki</au><au>van Ooijen, Gerben</au><au>Okamura, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylation deficiency disrupts biological rhythms from bacteria to humans</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-05-06</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>211</spage><epage>211</epage><pages>211-211</pages><artnum>211</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32376902</pmid><doi>10.1038/s42003-020-0942-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5668-6844</orcidid><orcidid>https://orcid.org/0000-0002-6200-6075</orcidid><orcidid>https://orcid.org/0000-0002-4293-7331</orcidid><orcidid>https://orcid.org/0000-0001-8238-6864</orcidid><orcidid>https://orcid.org/0000-0001-7967-0637</orcidid><orcidid>https://orcid.org/0000-0003-2420-8220</orcidid><orcidid>https://orcid.org/0000-0002-5538-5206</orcidid><orcidid>https://orcid.org/0000-0002-2776-062X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-05, Vol.3 (1), p.211-211, Article 211
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203018
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; PubMed Central
subjects 13/1
13/109
13/44
13/51
14
14/5
38
38/71
38/90
42
59
631/181
631/443/319
631/80/105
64
64/11
64/116
64/24
64/60
82/29
82/58
96
Algae
Animals
Arabidopsis - physiology
Bacteria
Biological clocks
Biological rhythms
Biology
Biomedical and Life Sciences
Caenorhabditis elegans - physiology
Chlamydomonas reinhardtii - physiology
Chlorophyta - physiology
Circadian Rhythm
Circadian rhythms
Drosophila melanogaster - physiology
Evolution
Humans
Life Sciences
Mammalian cells
Mammals
Metabolic pathways
Methylation
Mice - physiology
Synechococcus - physiology
Therapeutic applications
Zebrafish - physiology
title Methylation deficiency disrupts biological rhythms from bacteria to humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylation%20deficiency%20disrupts%20biological%20rhythms%20from%20bacteria%20to%20humans&rft.jtitle=Communications%20biology&rft.au=Fustin,%20Jean-Michel&rft.date=2020-05-06&rft.volume=3&rft.issue=1&rft.spage=211&rft.epage=211&rft.pages=211-211&rft.artnum=211&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0942-0&rft_dat=%3Cproquest_pubme%3E2399210279%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399210279&rft_id=info:pmid/32376902&rfr_iscdi=true