Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence

The success of Staphylococcus aureus as a pathogen is due to its capability of fine‐tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy‐yielding metabolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2020-05, Vol.21 (5), p.e45832-n/a
Hauptverfasser: Schurig‐Briccio, Lici A, Parraga Solorzano, Paola K, Lencina, Andrea M, Radin, Jana N, Chen, Grischa Y, Sauer, John‐Demian, Kehl‐Fie, Thomas E, Gennis, Robert B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e45832
container_title EMBO reports
container_volume 21
creator Schurig‐Briccio, Lici A
Parraga Solorzano, Paola K
Lencina, Andrea M
Radin, Jana N
Chen, Grischa Y
Sauer, John‐Demian
Kehl‐Fie, Thomas E
Gennis, Robert B
description The success of Staphylococcus aureus as a pathogen is due to its capability of fine‐tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy‐yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH‐dependent aerobic respiration on the physiology of S. aureus . Differing from many pathogens, S. aureus has two type‐2 respiratory NADH dehydrogenases (NDH‐2s) but lacks the respiratory ion‐pumping NDHs. Here, we show that the NDH‐2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α‐toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two‐component system, which responds to fatty acids regulation, is responsible for the link between NADH‐dependent respiration and virulence in S. aureus . Synopsis NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence. NdhC is vital for α‐toxin production, whereas NdhC and NdhF are critical for biofilm formation and systemic infection. NdhC‐deficient strains accumulate free fatty acids in the stationary phase. SaeRS responds to changes in fatty acid metabolism, thereby affecting α‐toxin production and biofilm formation. Graphical Abstract NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence.
doi_str_mv 10.15252/embr.201845832
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7202225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398522715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4642-31572504480049c4a49c7763a6d8998b02aa180c42cf78443c06e2cc4deca7aa3</originalsourceid><addsrcrecordid>eNqFkcFPFDEUxhuiAUTP3sgkXrgstK_ttMPBBBDFBCUBjd6abvftbkl3urQz6P73Fmdd0cR46Wva3_vyvfcR8pLRQyZBwhEuxukQKNNCag5bZJeJuhlxpvST9R2Afd0hz3K-pZTKRultssMBKPBa7JIv1zFgFadVwrz0yXYxraqPJ28uqvjdT2znY1v5turmWIhZH4aXwt90djlfheiic32ubJ-wlHuf-oCtw-fk6dSGjC_WdY98fnv-6exidHn17v3ZyeXIiVpAMSoVSCqEplQ0TthyKFVzW0900-gxBWuZpk6AmyotBHe0RnBOTNBZZS3fI68H3WU_XuDEYdslG8wy-YVNKxOtN3_-tH5uZvHeqLIBAFkEDtYCKd71mDuz8NlhCLbF2GcDXJflciHrgr76C72NfWrLeIVqtARQ7EHwaKBcijknnG7MMGp-hmYeQjOb0ErH_uMZNvyvlApwPADffMDV__TM-YfT68fqdGjOpa-dYfrt-l-GfgAsJbRD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398522715</pqid></control><display><type>article</type><title>Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence</title><source>Springer Nature OA Free Journals</source><creator>Schurig‐Briccio, Lici A ; Parraga Solorzano, Paola K ; Lencina, Andrea M ; Radin, Jana N ; Chen, Grischa Y ; Sauer, John‐Demian ; Kehl‐Fie, Thomas E ; Gennis, Robert B</creator><creatorcontrib>Schurig‐Briccio, Lici A ; Parraga Solorzano, Paola K ; Lencina, Andrea M ; Radin, Jana N ; Chen, Grischa Y ; Sauer, John‐Demian ; Kehl‐Fie, Thomas E ; Gennis, Robert B</creatorcontrib><description>The success of Staphylococcus aureus as a pathogen is due to its capability of fine‐tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy‐yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH‐dependent aerobic respiration on the physiology of S. aureus . Differing from many pathogens, S. aureus has two type‐2 respiratory NADH dehydrogenases (NDH‐2s) but lacks the respiratory ion‐pumping NDHs. Here, we show that the NDH‐2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α‐toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two‐component system, which responds to fatty acids regulation, is responsible for the link between NADH‐dependent respiration and virulence in S. aureus . Synopsis NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence. NdhC is vital for α‐toxin production, whereas NdhC and NdhF are critical for biofilm formation and systemic infection. NdhC‐deficient strains accumulate free fatty acids in the stationary phase. SaeRS responds to changes in fatty acid metabolism, thereby affecting α‐toxin production and biofilm formation. Graphical Abstract NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201845832</identifier><identifier>PMID: 32202364</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aerobic respiration ; Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biofilms ; Disseminated infection ; EMBO21 ; EMBO23 ; Fatty acids ; Gene Expression Regulation, Bacterial ; Metabolic pathways ; Metabolism ; Mice ; NAD ; NADH ; NADH dehydrogenase ; NADH/NAD ; Nicotinamide adenine dinucleotide ; Organs ; Oxidation ; Pathogens ; Phenotypes ; Physiology ; Respiration ; respiratory chain ; Staphylococcal Infections ; Staphylococcus aureus ; Staphylococcus aureus - genetics ; Stationary phase ; Toxins ; two‐component system ; Vertebrates ; Virulence ; α-Toxin</subject><ispartof>EMBO reports, 2020-05, Vol.21 (5), p.e45832-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4642-31572504480049c4a49c7763a6d8998b02aa180c42cf78443c06e2cc4deca7aa3</citedby><cites>FETCH-LOGICAL-c4642-31572504480049c4a49c7763a6d8998b02aa180c42cf78443c06e2cc4deca7aa3</cites><orcidid>0000-0001-9367-794X ; 0000-0002-5514-2298 ; 0000-0001-7933-6460 ; 0000-0002-3805-6945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202225/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202225/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.201845832$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32202364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schurig‐Briccio, Lici A</creatorcontrib><creatorcontrib>Parraga Solorzano, Paola K</creatorcontrib><creatorcontrib>Lencina, Andrea M</creatorcontrib><creatorcontrib>Radin, Jana N</creatorcontrib><creatorcontrib>Chen, Grischa Y</creatorcontrib><creatorcontrib>Sauer, John‐Demian</creatorcontrib><creatorcontrib>Kehl‐Fie, Thomas E</creatorcontrib><creatorcontrib>Gennis, Robert B</creatorcontrib><title>Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The success of Staphylococcus aureus as a pathogen is due to its capability of fine‐tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy‐yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH‐dependent aerobic respiration on the physiology of S. aureus . Differing from many pathogens, S. aureus has two type‐2 respiratory NADH dehydrogenases (NDH‐2s) but lacks the respiratory ion‐pumping NDHs. Here, we show that the NDH‐2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α‐toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two‐component system, which responds to fatty acids regulation, is responsible for the link between NADH‐dependent respiration and virulence in S. aureus . Synopsis NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence. NdhC is vital for α‐toxin production, whereas NdhC and NdhF are critical for biofilm formation and systemic infection. NdhC‐deficient strains accumulate free fatty acids in the stationary phase. SaeRS responds to changes in fatty acid metabolism, thereby affecting α‐toxin production and biofilm formation. Graphical Abstract NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence.</description><subject>Aerobic respiration</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilms</subject><subject>Disseminated infection</subject><subject>EMBO21</subject><subject>EMBO23</subject><subject>Fatty acids</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>NAD</subject><subject>NADH</subject><subject>NADH dehydrogenase</subject><subject>NADH/NAD</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Organs</subject><subject>Oxidation</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Respiration</subject><subject>respiratory chain</subject><subject>Staphylococcal Infections</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - genetics</subject><subject>Stationary phase</subject><subject>Toxins</subject><subject>two‐component system</subject><subject>Vertebrates</subject><subject>Virulence</subject><subject>α-Toxin</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFPFDEUxhuiAUTP3sgkXrgstK_ttMPBBBDFBCUBjd6abvftbkl3urQz6P73Fmdd0cR46Wva3_vyvfcR8pLRQyZBwhEuxukQKNNCag5bZJeJuhlxpvST9R2Afd0hz3K-pZTKRultssMBKPBa7JIv1zFgFadVwrz0yXYxraqPJ28uqvjdT2znY1v5turmWIhZH4aXwt90djlfheiic32ubJ-wlHuf-oCtw-fk6dSGjC_WdY98fnv-6exidHn17v3ZyeXIiVpAMSoVSCqEplQ0TthyKFVzW0900-gxBWuZpk6AmyotBHe0RnBOTNBZZS3fI68H3WU_XuDEYdslG8wy-YVNKxOtN3_-tH5uZvHeqLIBAFkEDtYCKd71mDuz8NlhCLbF2GcDXJflciHrgr76C72NfWrLeIVqtARQ7EHwaKBcijknnG7MMGp-hmYeQjOb0ErH_uMZNvyvlApwPADffMDV__TM-YfT68fqdGjOpa-dYfrt-l-GfgAsJbRD</recordid><startdate>20200506</startdate><enddate>20200506</enddate><creator>Schurig‐Briccio, Lici A</creator><creator>Parraga Solorzano, Paola K</creator><creator>Lencina, Andrea M</creator><creator>Radin, Jana N</creator><creator>Chen, Grischa Y</creator><creator>Sauer, John‐Demian</creator><creator>Kehl‐Fie, Thomas E</creator><creator>Gennis, Robert B</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9367-794X</orcidid><orcidid>https://orcid.org/0000-0002-5514-2298</orcidid><orcidid>https://orcid.org/0000-0001-7933-6460</orcidid><orcidid>https://orcid.org/0000-0002-3805-6945</orcidid></search><sort><creationdate>20200506</creationdate><title>Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence</title><author>Schurig‐Briccio, Lici A ; Parraga Solorzano, Paola K ; Lencina, Andrea M ; Radin, Jana N ; Chen, Grischa Y ; Sauer, John‐Demian ; Kehl‐Fie, Thomas E ; Gennis, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4642-31572504480049c4a49c7763a6d8998b02aa180c42cf78443c06e2cc4deca7aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerobic respiration</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilms</topic><topic>Disseminated infection</topic><topic>EMBO21</topic><topic>EMBO23</topic><topic>Fatty acids</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>NAD</topic><topic>NADH</topic><topic>NADH dehydrogenase</topic><topic>NADH/NAD</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Organs</topic><topic>Oxidation</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Respiration</topic><topic>respiratory chain</topic><topic>Staphylococcal Infections</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - genetics</topic><topic>Stationary phase</topic><topic>Toxins</topic><topic>two‐component system</topic><topic>Vertebrates</topic><topic>Virulence</topic><topic>α-Toxin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schurig‐Briccio, Lici A</creatorcontrib><creatorcontrib>Parraga Solorzano, Paola K</creatorcontrib><creatorcontrib>Lencina, Andrea M</creatorcontrib><creatorcontrib>Radin, Jana N</creatorcontrib><creatorcontrib>Chen, Grischa Y</creatorcontrib><creatorcontrib>Sauer, John‐Demian</creatorcontrib><creatorcontrib>Kehl‐Fie, Thomas E</creatorcontrib><creatorcontrib>Gennis, Robert B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schurig‐Briccio, Lici A</au><au>Parraga Solorzano, Paola K</au><au>Lencina, Andrea M</au><au>Radin, Jana N</au><au>Chen, Grischa Y</au><au>Sauer, John‐Demian</au><au>Kehl‐Fie, Thomas E</au><au>Gennis, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2020-05-06</date><risdate>2020</risdate><volume>21</volume><issue>5</issue><spage>e45832</spage><epage>n/a</epage><pages>e45832-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>The success of Staphylococcus aureus as a pathogen is due to its capability of fine‐tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy‐yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH‐dependent aerobic respiration on the physiology of S. aureus . Differing from many pathogens, S. aureus has two type‐2 respiratory NADH dehydrogenases (NDH‐2s) but lacks the respiratory ion‐pumping NDHs. Here, we show that the NDH‐2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α‐toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two‐component system, which responds to fatty acids regulation, is responsible for the link between NADH‐dependent respiration and virulence in S. aureus . Synopsis NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence. NdhC is vital for α‐toxin production, whereas NdhC and NdhF are critical for biofilm formation and systemic infection. NdhC‐deficient strains accumulate free fatty acids in the stationary phase. SaeRS responds to changes in fatty acid metabolism, thereby affecting α‐toxin production and biofilm formation. Graphical Abstract NADH‐dependent respiration regulates fatty acid metabolism in Staphylococcus aureus . Changes in the concentration of free fatty acids are sensed by the SaeRS two‐component system, which controls virulence.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32202364</pmid><doi>10.15252/embr.201845832</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9367-794X</orcidid><orcidid>https://orcid.org/0000-0002-5514-2298</orcidid><orcidid>https://orcid.org/0000-0001-7933-6460</orcidid><orcidid>https://orcid.org/0000-0002-3805-6945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1469-221X
ispartof EMBO reports, 2020-05, Vol.21 (5), p.e45832-n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7202225
source Springer Nature OA Free Journals
subjects Aerobic respiration
Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biofilms
Disseminated infection
EMBO21
EMBO23
Fatty acids
Gene Expression Regulation, Bacterial
Metabolic pathways
Metabolism
Mice
NAD
NADH
NADH dehydrogenase
NADH/NAD
Nicotinamide adenine dinucleotide
Organs
Oxidation
Pathogens
Phenotypes
Physiology
Respiration
respiratory chain
Staphylococcal Infections
Staphylococcus aureus
Staphylococcus aureus - genetics
Stationary phase
Toxins
two‐component system
Vertebrates
Virulence
α-Toxin
title Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20respiratory%20NADH%20oxidation%20in%20the%20regulation%20of%20Staphylococcus%20aureus%20virulence&rft.jtitle=EMBO%20reports&rft.au=Schurig%E2%80%90Briccio,%20Lici%20A&rft.date=2020-05-06&rft.volume=21&rft.issue=5&rft.spage=e45832&rft.epage=n/a&rft.pages=e45832-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201845832&rft_dat=%3Cproquest_C6C%3E2398522715%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398522715&rft_id=info:pmid/32202364&rfr_iscdi=true