Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer
Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, an...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2020 |
creator | Lin, Shudong Situ, Jie Yang, Fei Lin, Shaoxiong Fang, Youqiang Luo, Yun |
description | Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC. |
doi_str_mv | 10.1155/2020/9186583 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7201588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629053553</galeid><sourcerecordid>A629053553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpjTOyxJGG-iPJJhek1ZZCpRaqspytiT1OvUrire0U7Y_qf8SrXZZywxePxs-882o8WfaW0Y-MleU5p5yeN6yuylq8yI65YEVesYK9PMRCHGWnIaxoOjWraFO9zo4ELzgVNT_OnubrCAP6fOHG1dRBRE1upj5aM40qWjdCT25dv0mIVeQbjG4NPlrVYyAQyAJGlYqX4DtMpWfk5u4q_9lHDwHHYKN9RHLhp45cYJ9ivyE_NiHiEIhxniw9QhxwjMSZJBVS2bZlfofBhggpf-tdCiLuG73JXhnoA57u75Nsefl5ufiaX3__crWYX-eqaJqYVzUIMLo1vJnVM2yZ4UXVMjQcoFGsBKqZoKAZ12BoJbRuKkV1yZp21oIRJ9mnnex6agfUKjn00Mu1twP4jXRg5b8vo72XnXuUM05ZWddJ4P1ewLuHCUOUKzf5NMsgeUEpnxVCPKM66FHa0bgkpgYblJxXvKGlKEuRqLMdpdIsgkdz8MGo3C6B3C6B3C9Bwt89936A_3x5Aj7sgHs7avhl_1MOE4MG_tJM1JRx8Rt_EMff</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400274338</pqid></control><display><type>article</type><title>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Lin, Shudong ; Situ, Jie ; Yang, Fei ; Lin, Shaoxiong ; Fang, Youqiang ; Luo, Yun</creator><contributor>Zhou, Jinyuan</contributor><creatorcontrib>Lin, Shudong ; Situ, Jie ; Yang, Fei ; Lin, Shaoxiong ; Fang, Youqiang ; Luo, Yun ; Zhou, Jinyuan</creatorcontrib><description>Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/9186583</identifier><identifier>PMID: 32420382</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - pharmacokinetics ; Aptamers, Nucleotide - pharmacology ; Biocompatibility ; Block copolymers ; Cancer therapies ; Care and treatment ; Castration ; Chemical compounds ; Contrast agents ; Contrast Media - chemistry ; Contrast Media - pharmacokinetics ; Contrast Media - pharmacology ; Copolymers ; Cytotoxicity ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - pharmacokinetics ; Delayed-Action Preparations - pharmacology ; Docetaxel - chemistry ; Docetaxel - pharmacokinetics ; Docetaxel - pharmacology ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; Drug delivery ; Drug delivery systems ; Drugs ; Health aspects ; Humans ; Hydrophobicity ; In vivo methods and tests ; Iron oxides ; Ligands ; Magnetic fields ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Medical prognosis ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; PC-3 Cells ; Pharmacology ; Polyethylene glycol ; Polylactide-co-glycolide ; Polymers ; Polyols ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - diagnostic imaging ; Prostatic Neoplasms, Castration-Resistant - drug therapy ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Self-assembly ; Toxicity ; Vehicles</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Youqiang Fang et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Youqiang Fang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Youqiang Fang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</citedby><cites>FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</cites><orcidid>0000-0003-3539-3310 ; 0000-0002-2768-5949 ; 0000-0001-7814-4889 ; 0000-0002-3124-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32420382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhou, Jinyuan</contributor><creatorcontrib>Lin, Shudong</creatorcontrib><creatorcontrib>Situ, Jie</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Lin, Shaoxiong</creatorcontrib><creatorcontrib>Fang, Youqiang</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><title>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.</description><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - pharmacokinetics</subject><subject>Aptamers, Nucleotide - pharmacology</subject><subject>Biocompatibility</subject><subject>Block copolymers</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Castration</subject><subject>Chemical compounds</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - pharmacokinetics</subject><subject>Contrast Media - pharmacology</subject><subject>Copolymers</subject><subject>Cytotoxicity</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - pharmacokinetics</subject><subject>Delayed-Action Preparations - pharmacology</subject><subject>Docetaxel - chemistry</subject><subject>Docetaxel - pharmacokinetics</subject><subject>Docetaxel - pharmacology</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>In vivo methods and tests</subject><subject>Iron oxides</subject><subject>Ligands</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>PC-3 Cells</subject><subject>Pharmacology</subject><subject>Polyethylene glycol</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Polyols</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - diagnostic imaging</subject><subject>Prostatic Neoplasms, Castration-Resistant - drug therapy</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Self-assembly</subject><subject>Toxicity</subject><subject>Vehicles</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhiMEolXpjTOyxJGG-iPJJhek1ZZCpRaqspytiT1OvUrire0U7Y_qf8SrXZZywxePxs-882o8WfaW0Y-MleU5p5yeN6yuylq8yI65YEVesYK9PMRCHGWnIaxoOjWraFO9zo4ELzgVNT_OnubrCAP6fOHG1dRBRE1upj5aM40qWjdCT25dv0mIVeQbjG4NPlrVYyAQyAJGlYqX4DtMpWfk5u4q_9lHDwHHYKN9RHLhp45cYJ9ivyE_NiHiEIhxniw9QhxwjMSZJBVS2bZlfofBhggpf-tdCiLuG73JXhnoA57u75Nsefl5ufiaX3__crWYX-eqaJqYVzUIMLo1vJnVM2yZ4UXVMjQcoFGsBKqZoKAZ12BoJbRuKkV1yZp21oIRJ9mnnex6agfUKjn00Mu1twP4jXRg5b8vo72XnXuUM05ZWddJ4P1ewLuHCUOUKzf5NMsgeUEpnxVCPKM66FHa0bgkpgYblJxXvKGlKEuRqLMdpdIsgkdz8MGo3C6B3C6B3C9Bwt89936A_3x5Aj7sgHs7avhl_1MOE4MG_tJM1JRx8Rt_EMff</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lin, Shudong</creator><creator>Situ, Jie</creator><creator>Yang, Fei</creator><creator>Lin, Shaoxiong</creator><creator>Fang, Youqiang</creator><creator>Luo, Yun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3539-3310</orcidid><orcidid>https://orcid.org/0000-0002-2768-5949</orcidid><orcidid>https://orcid.org/0000-0001-7814-4889</orcidid><orcidid>https://orcid.org/0000-0002-3124-2905</orcidid></search><sort><creationdate>2020</creationdate><title>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</title><author>Lin, Shudong ; Situ, Jie ; Yang, Fei ; Lin, Shaoxiong ; Fang, Youqiang ; Luo, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - pharmacokinetics</topic><topic>Aptamers, Nucleotide - pharmacology</topic><topic>Biocompatibility</topic><topic>Block copolymers</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Castration</topic><topic>Chemical compounds</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - pharmacokinetics</topic><topic>Contrast Media - pharmacology</topic><topic>Copolymers</topic><topic>Cytotoxicity</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - pharmacokinetics</topic><topic>Delayed-Action Preparations - pharmacology</topic><topic>Docetaxel - chemistry</topic><topic>Docetaxel - pharmacokinetics</topic><topic>Docetaxel - pharmacology</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>In vivo methods and tests</topic><topic>Iron oxides</topic><topic>Ligands</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>PC-3 Cells</topic><topic>Pharmacology</topic><topic>Polyethylene glycol</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Polyols</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - diagnostic imaging</topic><topic>Prostatic Neoplasms, Castration-Resistant - drug therapy</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Self-assembly</topic><topic>Toxicity</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shudong</creatorcontrib><creatorcontrib>Situ, Jie</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Lin, Shaoxiong</creatorcontrib><creatorcontrib>Fang, Youqiang</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shudong</au><au>Situ, Jie</au><au>Yang, Fei</au><au>Lin, Shaoxiong</au><au>Fang, Youqiang</au><au>Luo, Yun</au><au>Zhou, Jinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32420382</pmid><doi>10.1155/2020/9186583</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3539-3310</orcidid><orcidid>https://orcid.org/0000-0002-2768-5949</orcidid><orcidid>https://orcid.org/0000-0001-7814-4889</orcidid><orcidid>https://orcid.org/0000-0002-3124-2905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2020, Vol.2020 (2020), p.1-12 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7201588 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Aptamers Aptamers, Nucleotide - chemistry Aptamers, Nucleotide - pharmacokinetics Aptamers, Nucleotide - pharmacology Biocompatibility Block copolymers Cancer therapies Care and treatment Castration Chemical compounds Contrast agents Contrast Media - chemistry Contrast Media - pharmacokinetics Contrast Media - pharmacology Copolymers Cytotoxicity Delayed-Action Preparations - chemistry Delayed-Action Preparations - pharmacokinetics Delayed-Action Preparations - pharmacology Docetaxel - chemistry Docetaxel - pharmacokinetics Docetaxel - pharmacology Drug Carriers - chemistry Drug Carriers - pharmacokinetics Drug Carriers - pharmacology Drug delivery Drug delivery systems Drugs Health aspects Humans Hydrophobicity In vivo methods and tests Iron oxides Ligands Magnetic fields Magnetic Resonance Imaging Male Medical imaging Medical prognosis Nanoparticles Nanoparticles - chemistry Nanoparticles - therapeutic use PC-3 Cells Pharmacology Polyethylene glycol Polylactide-co-glycolide Polymers Polyols Prostate cancer Prostatic Neoplasms, Castration-Resistant - diagnostic imaging Prostatic Neoplasms, Castration-Resistant - drug therapy Prostatic Neoplasms, Castration-Resistant - metabolism Self-assembly Toxicity Vehicles |
title | Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aptamer-Conjugated%20Multifunctional%20Polymeric%20Nanoparticles%20as%20Cancer-Targeted,%20MRI-Ultrasensitive%20Drug%20Delivery%20Systems%20for%20Treatment%20of%20Castration-Resistant%20Prostate%20Cancer&rft.jtitle=BioMed%20research%20international&rft.au=Lin,%20Shudong&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/9186583&rft_dat=%3Cgale_pubme%3EA629053553%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400274338&rft_id=info:pmid/32420382&rft_galeid=A629053553&rfr_iscdi=true |