Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer

Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Lin, Shudong, Situ, Jie, Yang, Fei, Lin, Shaoxiong, Fang, Youqiang, Luo, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title BioMed research international
container_volume 2020
creator Lin, Shudong
Situ, Jie
Yang, Fei
Lin, Shaoxiong
Fang, Youqiang
Luo, Yun
description Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.
doi_str_mv 10.1155/2020/9186583
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7201588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629053553</galeid><sourcerecordid>A629053553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpjTOyxJGG-iPJJhek1ZZCpRaqspytiT1OvUrire0U7Y_qf8SrXZZywxePxs-882o8WfaW0Y-MleU5p5yeN6yuylq8yI65YEVesYK9PMRCHGWnIaxoOjWraFO9zo4ELzgVNT_OnubrCAP6fOHG1dRBRE1upj5aM40qWjdCT25dv0mIVeQbjG4NPlrVYyAQyAJGlYqX4DtMpWfk5u4q_9lHDwHHYKN9RHLhp45cYJ9ivyE_NiHiEIhxniw9QhxwjMSZJBVS2bZlfofBhggpf-tdCiLuG73JXhnoA57u75Nsefl5ufiaX3__crWYX-eqaJqYVzUIMLo1vJnVM2yZ4UXVMjQcoFGsBKqZoKAZ12BoJbRuKkV1yZp21oIRJ9mnnex6agfUKjn00Mu1twP4jXRg5b8vo72XnXuUM05ZWddJ4P1ewLuHCUOUKzf5NMsgeUEpnxVCPKM66FHa0bgkpgYblJxXvKGlKEuRqLMdpdIsgkdz8MGo3C6B3C6B3C9Bwt89936A_3x5Aj7sgHs7avhl_1MOE4MG_tJM1JRx8Rt_EMff</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400274338</pqid></control><display><type>article</type><title>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Lin, Shudong ; Situ, Jie ; Yang, Fei ; Lin, Shaoxiong ; Fang, Youqiang ; Luo, Yun</creator><contributor>Zhou, Jinyuan</contributor><creatorcontrib>Lin, Shudong ; Situ, Jie ; Yang, Fei ; Lin, Shaoxiong ; Fang, Youqiang ; Luo, Yun ; Zhou, Jinyuan</creatorcontrib><description>Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/9186583</identifier><identifier>PMID: 32420382</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - pharmacokinetics ; Aptamers, Nucleotide - pharmacology ; Biocompatibility ; Block copolymers ; Cancer therapies ; Care and treatment ; Castration ; Chemical compounds ; Contrast agents ; Contrast Media - chemistry ; Contrast Media - pharmacokinetics ; Contrast Media - pharmacology ; Copolymers ; Cytotoxicity ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - pharmacokinetics ; Delayed-Action Preparations - pharmacology ; Docetaxel - chemistry ; Docetaxel - pharmacokinetics ; Docetaxel - pharmacology ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; Drug delivery ; Drug delivery systems ; Drugs ; Health aspects ; Humans ; Hydrophobicity ; In vivo methods and tests ; Iron oxides ; Ligands ; Magnetic fields ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Medical prognosis ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; PC-3 Cells ; Pharmacology ; Polyethylene glycol ; Polylactide-co-glycolide ; Polymers ; Polyols ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - diagnostic imaging ; Prostatic Neoplasms, Castration-Resistant - drug therapy ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Self-assembly ; Toxicity ; Vehicles</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Youqiang Fang et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Youqiang Fang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Youqiang Fang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</citedby><cites>FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</cites><orcidid>0000-0003-3539-3310 ; 0000-0002-2768-5949 ; 0000-0001-7814-4889 ; 0000-0002-3124-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32420382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhou, Jinyuan</contributor><creatorcontrib>Lin, Shudong</creatorcontrib><creatorcontrib>Situ, Jie</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Lin, Shaoxiong</creatorcontrib><creatorcontrib>Fang, Youqiang</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><title>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.</description><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - pharmacokinetics</subject><subject>Aptamers, Nucleotide - pharmacology</subject><subject>Biocompatibility</subject><subject>Block copolymers</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Castration</subject><subject>Chemical compounds</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - pharmacokinetics</subject><subject>Contrast Media - pharmacology</subject><subject>Copolymers</subject><subject>Cytotoxicity</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - pharmacokinetics</subject><subject>Delayed-Action Preparations - pharmacology</subject><subject>Docetaxel - chemistry</subject><subject>Docetaxel - pharmacokinetics</subject><subject>Docetaxel - pharmacology</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>In vivo methods and tests</subject><subject>Iron oxides</subject><subject>Ligands</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>PC-3 Cells</subject><subject>Pharmacology</subject><subject>Polyethylene glycol</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Polyols</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - diagnostic imaging</subject><subject>Prostatic Neoplasms, Castration-Resistant - drug therapy</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Self-assembly</subject><subject>Toxicity</subject><subject>Vehicles</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhiMEolXpjTOyxJGG-iPJJhek1ZZCpRaqspytiT1OvUrire0U7Y_qf8SrXZZywxePxs-882o8WfaW0Y-MleU5p5yeN6yuylq8yI65YEVesYK9PMRCHGWnIaxoOjWraFO9zo4ELzgVNT_OnubrCAP6fOHG1dRBRE1upj5aM40qWjdCT25dv0mIVeQbjG4NPlrVYyAQyAJGlYqX4DtMpWfk5u4q_9lHDwHHYKN9RHLhp45cYJ9ivyE_NiHiEIhxniw9QhxwjMSZJBVS2bZlfofBhggpf-tdCiLuG73JXhnoA57u75Nsefl5ufiaX3__crWYX-eqaJqYVzUIMLo1vJnVM2yZ4UXVMjQcoFGsBKqZoKAZ12BoJbRuKkV1yZp21oIRJ9mnnex6agfUKjn00Mu1twP4jXRg5b8vo72XnXuUM05ZWddJ4P1ewLuHCUOUKzf5NMsgeUEpnxVCPKM66FHa0bgkpgYblJxXvKGlKEuRqLMdpdIsgkdz8MGo3C6B3C6B3C9Bwt89936A_3x5Aj7sgHs7avhl_1MOE4MG_tJM1JRx8Rt_EMff</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lin, Shudong</creator><creator>Situ, Jie</creator><creator>Yang, Fei</creator><creator>Lin, Shaoxiong</creator><creator>Fang, Youqiang</creator><creator>Luo, Yun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3539-3310</orcidid><orcidid>https://orcid.org/0000-0002-2768-5949</orcidid><orcidid>https://orcid.org/0000-0001-7814-4889</orcidid><orcidid>https://orcid.org/0000-0002-3124-2905</orcidid></search><sort><creationdate>2020</creationdate><title>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</title><author>Lin, Shudong ; Situ, Jie ; Yang, Fei ; Lin, Shaoxiong ; Fang, Youqiang ; Luo, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-68a3afdbf29787eb1f246b1ef2aa9c15a0d130ad12daf063dd96c0d519b7baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - pharmacokinetics</topic><topic>Aptamers, Nucleotide - pharmacology</topic><topic>Biocompatibility</topic><topic>Block copolymers</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Castration</topic><topic>Chemical compounds</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - pharmacokinetics</topic><topic>Contrast Media - pharmacology</topic><topic>Copolymers</topic><topic>Cytotoxicity</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - pharmacokinetics</topic><topic>Delayed-Action Preparations - pharmacology</topic><topic>Docetaxel - chemistry</topic><topic>Docetaxel - pharmacokinetics</topic><topic>Docetaxel - pharmacology</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>In vivo methods and tests</topic><topic>Iron oxides</topic><topic>Ligands</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>PC-3 Cells</topic><topic>Pharmacology</topic><topic>Polyethylene glycol</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Polyols</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - diagnostic imaging</topic><topic>Prostatic Neoplasms, Castration-Resistant - drug therapy</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Self-assembly</topic><topic>Toxicity</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shudong</creatorcontrib><creatorcontrib>Situ, Jie</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Lin, Shaoxiong</creatorcontrib><creatorcontrib>Fang, Youqiang</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shudong</au><au>Situ, Jie</au><au>Yang, Fei</au><au>Lin, Shaoxiong</au><au>Fang, Youqiang</au><au>Luo, Yun</au><au>Zhou, Jinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The “core-shell” targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32420382</pmid><doi>10.1155/2020/9186583</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3539-3310</orcidid><orcidid>https://orcid.org/0000-0002-2768-5949</orcidid><orcidid>https://orcid.org/0000-0001-7814-4889</orcidid><orcidid>https://orcid.org/0000-0002-3124-2905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2020, Vol.2020 (2020), p.1-12
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7201588
source MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Aptamers
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - pharmacokinetics
Aptamers, Nucleotide - pharmacology
Biocompatibility
Block copolymers
Cancer therapies
Care and treatment
Castration
Chemical compounds
Contrast agents
Contrast Media - chemistry
Contrast Media - pharmacokinetics
Contrast Media - pharmacology
Copolymers
Cytotoxicity
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - pharmacokinetics
Delayed-Action Preparations - pharmacology
Docetaxel - chemistry
Docetaxel - pharmacokinetics
Docetaxel - pharmacology
Drug Carriers - chemistry
Drug Carriers - pharmacokinetics
Drug Carriers - pharmacology
Drug delivery
Drug delivery systems
Drugs
Health aspects
Humans
Hydrophobicity
In vivo methods and tests
Iron oxides
Ligands
Magnetic fields
Magnetic Resonance Imaging
Male
Medical imaging
Medical prognosis
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - therapeutic use
PC-3 Cells
Pharmacology
Polyethylene glycol
Polylactide-co-glycolide
Polymers
Polyols
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - diagnostic imaging
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - metabolism
Self-assembly
Toxicity
Vehicles
title Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aptamer-Conjugated%20Multifunctional%20Polymeric%20Nanoparticles%20as%20Cancer-Targeted,%20MRI-Ultrasensitive%20Drug%20Delivery%20Systems%20for%20Treatment%20of%20Castration-Resistant%20Prostate%20Cancer&rft.jtitle=BioMed%20research%20international&rft.au=Lin,%20Shudong&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/9186583&rft_dat=%3Cgale_pubme%3EA629053553%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400274338&rft_id=info:pmid/32420382&rft_galeid=A629053553&rfr_iscdi=true