Emergence of genomic diversity and recurrent mutations in SARS-CoV-2

SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection, genetics and evolution genetics and evolution, 2020-09, Vol.83, p.104351-104351, Article 104351
Hauptverfasser: van Dorp, Lucy, Acman, Mislav, Richard, Damien, Shaw, Liam P., Ford, Charlotte E., Ormond, Louise, Owen, Christopher J., Pang, Juanita, Tan, Cedric C.S., Boshier, Florencia A.T., Ortiz, Arturo Torres, Balloux, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104351
container_issue
container_start_page 104351
container_title Infection, genetics and evolution
container_volume 83
creator van Dorp, Lucy
Acman, Mislav
Richard, Damien
Shaw, Liam P.
Ford, Charlotte E.
Ormond, Louise
Owen, Christopher J.
Pang, Juanita
Tan, Cedric C.S.
Boshier, Florencia A.T.
Ortiz, Arturo Torres
Balloux, François
description SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes. •Phylogenetic estimates support that the COVID-2 pandemic started sometimes around 6 October 2019 – 11 December 2019.•The diversity of SARS-CoV-2 strains in many countries recapitulates its entire global diversity.•198 sites in the SARS-CoV-2 genome appear to have already undergone recurrent, independent mutations.•Detected recurrent mutations may indicate ongoing adaptation of SARS-CoV-2 to its novel human host.•Monitoring the build-up of genetic diversity in SARS-CoV-2 has potential to inform on targets for drugs and vaccines.
doi_str_mv 10.1016/j.meegid.2020.104351
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567134820301829</els_id><sourcerecordid>2401130626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-cce091435ab6bc63f0ccb130afe8a1aba7795c3bd7f56393fce8d2bd0bfcef763</originalsourceid><addsrcrecordid>eNp9kV1r2zAUhsXoaLO2_2AMX3YXzvRhS_bNIGTpWggU-nUrZOk4VYitVLID-feVcdqtveiVDufjPe_Rg9B3gqcEE_5rPW0AVtZMKaZDKmM5-YImJOciFTQXR4eYsKw4Qd9CWGNMBKbFMTphlBUi59kE_Vk04FfQakhcncTANVYnxu7AB9vtE9WaxIPuvYe2S5q-U511bUhsm9zNbu_SuXtM6Rn6WqtNgPPDe4oeLhf386t0efP3ej5bpjrnrEu1BlyS6FNVvNKc1VjrijCsaigUUZUSosw1q4yoY3_Jag2FoZXBVYxqwdkp-j3qbvuqAaOjJa82cutto_xeOmXl-0prn-TK7aQgZSkYjgI_R4GnD2NXs6UccphhnmWZ2JHYe3FY5t1zD6GTjQ0aNhvVguuDpBkm0Tyng69sbNXeheChftMmWA6w5FqOsOQAS46w4tiP_895G3ql8-9eiJ-6s-Bl0HZgZWxk0knj7OcbXgBQS6fe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401130626</pqid></control><display><type>article</type><title>Emergence of genomic diversity and recurrent mutations in SARS-CoV-2</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>van Dorp, Lucy ; Acman, Mislav ; Richard, Damien ; Shaw, Liam P. ; Ford, Charlotte E. ; Ormond, Louise ; Owen, Christopher J. ; Pang, Juanita ; Tan, Cedric C.S. ; Boshier, Florencia A.T. ; Ortiz, Arturo Torres ; Balloux, François</creator><creatorcontrib>van Dorp, Lucy ; Acman, Mislav ; Richard, Damien ; Shaw, Liam P. ; Ford, Charlotte E. ; Ormond, Louise ; Owen, Christopher J. ; Pang, Juanita ; Tan, Cedric C.S. ; Boshier, Florencia A.T. ; Ortiz, Arturo Torres ; Balloux, François</creatorcontrib><description>SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (&gt;15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes. •Phylogenetic estimates support that the COVID-2 pandemic started sometimes around 6 October 2019 – 11 December 2019.•The diversity of SARS-CoV-2 strains in many countries recapitulates its entire global diversity.•198 sites in the SARS-CoV-2 genome appear to have already undergone recurrent, independent mutations.•Detected recurrent mutations may indicate ongoing adaptation of SARS-CoV-2 to its novel human host.•Monitoring the build-up of genetic diversity in SARS-CoV-2 has potential to inform on targets for drugs and vaccines.</description><identifier>ISSN: 1567-1348</identifier><identifier>EISSN: 1567-7257</identifier><identifier>DOI: 10.1016/j.meegid.2020.104351</identifier><identifier>PMID: 32387564</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adaptation, Physiological - genetics ; Antiviral Agents ; Betacoronavirus ; Betacoronavirus - genetics ; Coronavirus Infections - prevention &amp; control ; Coronavirus Infections - virology ; COVID-19 ; COVID-19 Vaccines ; Genetic Variation ; Genome, Viral ; Homoplasies ; Humans ; Life Sciences ; Likelihood Functions ; Microbiology and Parasitology ; Mutation ; Pandemics ; Phylogenetics ; Phylogeny ; Pneumonia, Viral - virology ; SARS-CoV-2 ; Viral Vaccines ; Virology</subject><ispartof>Infection, genetics and evolution, 2020-09, Vol.83, p.104351-104351, Article 104351</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-cce091435ab6bc63f0ccb130afe8a1aba7795c3bd7f56393fce8d2bd0bfcef763</citedby><cites>FETCH-LOGICAL-c563t-cce091435ab6bc63f0ccb130afe8a1aba7795c3bd7f56393fce8d2bd0bfcef763</cites><orcidid>0000-0003-1978-7715 ; 0000-0002-6211-2310 ; 0000-0003-2587-2836 ; 0000-0001-8353-542X ; 0000-0002-5982-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567134820301829$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32387564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-reunion.fr/hal-03064447$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van Dorp, Lucy</creatorcontrib><creatorcontrib>Acman, Mislav</creatorcontrib><creatorcontrib>Richard, Damien</creatorcontrib><creatorcontrib>Shaw, Liam P.</creatorcontrib><creatorcontrib>Ford, Charlotte E.</creatorcontrib><creatorcontrib>Ormond, Louise</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><creatorcontrib>Pang, Juanita</creatorcontrib><creatorcontrib>Tan, Cedric C.S.</creatorcontrib><creatorcontrib>Boshier, Florencia A.T.</creatorcontrib><creatorcontrib>Ortiz, Arturo Torres</creatorcontrib><creatorcontrib>Balloux, François</creatorcontrib><title>Emergence of genomic diversity and recurrent mutations in SARS-CoV-2</title><title>Infection, genetics and evolution</title><addtitle>Infect Genet Evol</addtitle><description>SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (&gt;15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes. •Phylogenetic estimates support that the COVID-2 pandemic started sometimes around 6 October 2019 – 11 December 2019.•The diversity of SARS-CoV-2 strains in many countries recapitulates its entire global diversity.•198 sites in the SARS-CoV-2 genome appear to have already undergone recurrent, independent mutations.•Detected recurrent mutations may indicate ongoing adaptation of SARS-CoV-2 to its novel human host.•Monitoring the build-up of genetic diversity in SARS-CoV-2 has potential to inform on targets for drugs and vaccines.</description><subject>Adaptation, Physiological - genetics</subject><subject>Antiviral Agents</subject><subject>Betacoronavirus</subject><subject>Betacoronavirus - genetics</subject><subject>Coronavirus Infections - prevention &amp; control</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>COVID-19 Vaccines</subject><subject>Genetic Variation</subject><subject>Genome, Viral</subject><subject>Homoplasies</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Likelihood Functions</subject><subject>Microbiology and Parasitology</subject><subject>Mutation</subject><subject>Pandemics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Pneumonia, Viral - virology</subject><subject>SARS-CoV-2</subject><subject>Viral Vaccines</subject><subject>Virology</subject><issn>1567-1348</issn><issn>1567-7257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1r2zAUhsXoaLO2_2AMX3YXzvRhS_bNIGTpWggU-nUrZOk4VYitVLID-feVcdqtveiVDufjPe_Rg9B3gqcEE_5rPW0AVtZMKaZDKmM5-YImJOciFTQXR4eYsKw4Qd9CWGNMBKbFMTphlBUi59kE_Vk04FfQakhcncTANVYnxu7AB9vtE9WaxIPuvYe2S5q-U511bUhsm9zNbu_SuXtM6Rn6WqtNgPPDe4oeLhf386t0efP3ej5bpjrnrEu1BlyS6FNVvNKc1VjrijCsaigUUZUSosw1q4yoY3_Jag2FoZXBVYxqwdkp-j3qbvuqAaOjJa82cutto_xeOmXl-0prn-TK7aQgZSkYjgI_R4GnD2NXs6UccphhnmWZ2JHYe3FY5t1zD6GTjQ0aNhvVguuDpBkm0Tyng69sbNXeheChftMmWA6w5FqOsOQAS46w4tiP_895G3ql8-9eiJ-6s-Bl0HZgZWxk0knj7OcbXgBQS6fe</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>van Dorp, Lucy</creator><creator>Acman, Mislav</creator><creator>Richard, Damien</creator><creator>Shaw, Liam P.</creator><creator>Ford, Charlotte E.</creator><creator>Ormond, Louise</creator><creator>Owen, Christopher J.</creator><creator>Pang, Juanita</creator><creator>Tan, Cedric C.S.</creator><creator>Boshier, Florencia A.T.</creator><creator>Ortiz, Arturo Torres</creator><creator>Balloux, François</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1978-7715</orcidid><orcidid>https://orcid.org/0000-0002-6211-2310</orcidid><orcidid>https://orcid.org/0000-0003-2587-2836</orcidid><orcidid>https://orcid.org/0000-0001-8353-542X</orcidid><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid></search><sort><creationdate>20200901</creationdate><title>Emergence of genomic diversity and recurrent mutations in SARS-CoV-2</title><author>van Dorp, Lucy ; Acman, Mislav ; Richard, Damien ; Shaw, Liam P. ; Ford, Charlotte E. ; Ormond, Louise ; Owen, Christopher J. ; Pang, Juanita ; Tan, Cedric C.S. ; Boshier, Florencia A.T. ; Ortiz, Arturo Torres ; Balloux, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-cce091435ab6bc63f0ccb130afe8a1aba7795c3bd7f56393fce8d2bd0bfcef763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Antiviral Agents</topic><topic>Betacoronavirus</topic><topic>Betacoronavirus - genetics</topic><topic>Coronavirus Infections - prevention &amp; control</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>COVID-19 Vaccines</topic><topic>Genetic Variation</topic><topic>Genome, Viral</topic><topic>Homoplasies</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Likelihood Functions</topic><topic>Microbiology and Parasitology</topic><topic>Mutation</topic><topic>Pandemics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Pneumonia, Viral - virology</topic><topic>SARS-CoV-2</topic><topic>Viral Vaccines</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Dorp, Lucy</creatorcontrib><creatorcontrib>Acman, Mislav</creatorcontrib><creatorcontrib>Richard, Damien</creatorcontrib><creatorcontrib>Shaw, Liam P.</creatorcontrib><creatorcontrib>Ford, Charlotte E.</creatorcontrib><creatorcontrib>Ormond, Louise</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><creatorcontrib>Pang, Juanita</creatorcontrib><creatorcontrib>Tan, Cedric C.S.</creatorcontrib><creatorcontrib>Boshier, Florencia A.T.</creatorcontrib><creatorcontrib>Ortiz, Arturo Torres</creatorcontrib><creatorcontrib>Balloux, François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection, genetics and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Dorp, Lucy</au><au>Acman, Mislav</au><au>Richard, Damien</au><au>Shaw, Liam P.</au><au>Ford, Charlotte E.</au><au>Ormond, Louise</au><au>Owen, Christopher J.</au><au>Pang, Juanita</au><au>Tan, Cedric C.S.</au><au>Boshier, Florencia A.T.</au><au>Ortiz, Arturo Torres</au><au>Balloux, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergence of genomic diversity and recurrent mutations in SARS-CoV-2</atitle><jtitle>Infection, genetics and evolution</jtitle><addtitle>Infect Genet Evol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>83</volume><spage>104351</spage><epage>104351</epage><pages>104351-104351</pages><artnum>104351</artnum><issn>1567-1348</issn><eissn>1567-7257</eissn><abstract>SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (&gt;15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes. •Phylogenetic estimates support that the COVID-2 pandemic started sometimes around 6 October 2019 – 11 December 2019.•The diversity of SARS-CoV-2 strains in many countries recapitulates its entire global diversity.•198 sites in the SARS-CoV-2 genome appear to have already undergone recurrent, independent mutations.•Detected recurrent mutations may indicate ongoing adaptation of SARS-CoV-2 to its novel human host.•Monitoring the build-up of genetic diversity in SARS-CoV-2 has potential to inform on targets for drugs and vaccines.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32387564</pmid><doi>10.1016/j.meegid.2020.104351</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1978-7715</orcidid><orcidid>https://orcid.org/0000-0002-6211-2310</orcidid><orcidid>https://orcid.org/0000-0003-2587-2836</orcidid><orcidid>https://orcid.org/0000-0001-8353-542X</orcidid><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-1348
ispartof Infection, genetics and evolution, 2020-09, Vol.83, p.104351-104351, Article 104351
issn 1567-1348
1567-7257
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199730
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adaptation, Physiological - genetics
Antiviral Agents
Betacoronavirus
Betacoronavirus - genetics
Coronavirus Infections - prevention & control
Coronavirus Infections - virology
COVID-19
COVID-19 Vaccines
Genetic Variation
Genome, Viral
Homoplasies
Humans
Life Sciences
Likelihood Functions
Microbiology and Parasitology
Mutation
Pandemics
Phylogenetics
Phylogeny
Pneumonia, Viral - virology
SARS-CoV-2
Viral Vaccines
Virology
title Emergence of genomic diversity and recurrent mutations in SARS-CoV-2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergence%20of%20genomic%20diversity%20and%20recurrent%20mutations%20in%20SARS-CoV-2&rft.jtitle=Infection,%20genetics%20and%20evolution&rft.au=van%20Dorp,%20Lucy&rft.date=2020-09-01&rft.volume=83&rft.spage=104351&rft.epage=104351&rft.pages=104351-104351&rft.artnum=104351&rft.issn=1567-1348&rft.eissn=1567-7257&rft_id=info:doi/10.1016/j.meegid.2020.104351&rft_dat=%3Cproquest_pubme%3E2401130626%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401130626&rft_id=info:pmid/32387564&rft_els_id=S1567134820301829&rfr_iscdi=true