Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets

There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder ( N  = 988), Attention deficit hyperactivity disorder (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain imaging and behavior 2020-12, Vol.14 (6), p.2378-2416
Hauptverfasser: Lanka, Pradyumna, Rangaprakash, D, Dretsch, Michael N., Katz, Jeffrey S., Denney, Thomas S., Deshpande, Gopikrishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2416
container_issue 6
container_start_page 2378
container_title Brain imaging and behavior
container_volume 14
creator Lanka, Pradyumna
Rangaprakash, D
Dretsch, Michael N.
Katz, Jeffrey S.
Denney, Thomas S.
Deshpande, Gopikrishna
description There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder ( N  = 988), Attention deficit hyperactivity disorder ( N  = 930), Post-traumatic stress disorder ( N  = 87) and Alzheimer’s disease ( N  = 132). We applied 18 different machine learning classifiers (based on diverse principles) wherein the training/validation and the hold-out test data belonged to samples with the same diagnosis but differing in either the age range or the acquisition site. Our results indicate that overfitting can be a huge problem in heterogeneous datasets, especially with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the general clinical population. Further, different classifiers tended to perform well on different datasets. In order to address this, we propose a consensus-classifier by combining the predictive power of all 18 classifiers. The consensus-classifier was less sensitive to unmatched training/validation and holdout test data. Finally, we combined feature importance scores obtained from all classifiers to infer the discriminative ability of connectivity features. The functional connectivity patterns thus identified were robust to the classification algorithm used, age and acquisition site differences, and had diagnostic predictive ability in addition to univariate statistically significant group differences between the groups. A MATLAB toolbox called Machine Learning in NeuroImaging (MALINI), which implements all the 18 different classifiers along with the consensus classifier is available from Lanka et al. ( 2019 ) The toolbox can also be found at the following URL: https://github.com/pradlanka/malini .
doi_str_mv 10.1007/s11682-019-00191-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7198352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312550828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9890080d5a1f9632e661d8e0104757a4f48a9be2ec916465d5433d29ec06ca1f3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EoqXwB1igSGzYBDx-e4OEqvKQKrEA1sZ1JqmrxL7YSSX-Pb7ccnks2HgszXfOzOgQ8hToS6BUv6oAyrCegu1pe6A398gpWA69lkreP_6lPiGPar2hVApj4SE54aBsE9NT8vXTtsNyGysO3eLDdUzYzehLimnqxly6Ifop5brG0IXZ1xrHGPwac-rGkpdu9mXCvgY_Y5dwKzkuftprB7_6imt9TB6Mfq745K6ekS9vLz6fv-8vP777cP7msg9Ci7W3xlJq6CA9jFZxhkrBYJACFVpqL0ZhvL1ChsGCEkoOUnA-MIuBqtA0_Iy8PvjutqsFh4BpLX52u9IWKt9d9tH93Unx2k351mmwhkvWDF7cGZT8bcO6uiXWgPPsE-atOsaBSUkNMw19_g96k7eS2nmOCQ2KG8l0o9iBCiXXWnA8LgPU7QN0hwBdy879DNDtrZ_9ecZR8iuxBvADUFsrTVh-z_6P7Q9eaafh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471638527</pqid></control><display><type>article</type><title>Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanka, Pradyumna ; Rangaprakash, D ; Dretsch, Michael N. ; Katz, Jeffrey S. ; Denney, Thomas S. ; Deshpande, Gopikrishna</creator><creatorcontrib>Lanka, Pradyumna ; Rangaprakash, D ; Dretsch, Michael N. ; Katz, Jeffrey S. ; Denney, Thomas S. ; Deshpande, Gopikrishna</creatorcontrib><description>There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder ( N  = 988), Attention deficit hyperactivity disorder ( N  = 930), Post-traumatic stress disorder ( N  = 87) and Alzheimer’s disease ( N  = 132). We applied 18 different machine learning classifiers (based on diverse principles) wherein the training/validation and the hold-out test data belonged to samples with the same diagnosis but differing in either the age range or the acquisition site. Our results indicate that overfitting can be a huge problem in heterogeneous datasets, especially with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the general clinical population. Further, different classifiers tended to perform well on different datasets. In order to address this, we propose a consensus-classifier by combining the predictive power of all 18 classifiers. The consensus-classifier was less sensitive to unmatched training/validation and holdout test data. Finally, we combined feature importance scores obtained from all classifiers to infer the discriminative ability of connectivity features. The functional connectivity patterns thus identified were robust to the classification algorithm used, age and acquisition site differences, and had diagnostic predictive ability in addition to univariate statistically significant group differences between the groups. A MATLAB toolbox called Machine Learning in NeuroImaging (MALINI), which implements all the 18 different classifiers along with the consensus classifier is available from Lanka et al. ( 2019 ) The toolbox can also be found at the following URL: https://github.com/pradlanka/malini .</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-019-00191-8</identifier><identifier>PMID: 31691160</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Alzheimer's disease ; Attention deficit hyperactivity disorder ; Autism ; Autism Spectrum Disorder - diagnostic imaging ; Biomedical and Life Sciences ; Biomedicine ; Classification ; Classifiers ; Datasets ; Diagnostic systems ; Humans ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Medical diagnosis ; Medical imaging ; Mental disorders ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Neuropsychology ; Neuroradiology ; Neurosciences ; Original Research ; Post traumatic stress disorder ; Psychiatry ; Psychological stress ; Statistical analysis ; Statistical methods ; Supervised Machine Learning ; Training</subject><ispartof>Brain imaging and behavior, 2020-12, Vol.14 (6), p.2378-2416</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9890080d5a1f9632e661d8e0104757a4f48a9be2ec916465d5433d29ec06ca1f3</citedby><cites>FETCH-LOGICAL-c474t-9890080d5a1f9632e661d8e0104757a4f48a9be2ec916465d5433d29ec06ca1f3</cites><orcidid>0000-0002-5820-5928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11682-019-00191-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11682-019-00191-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31691160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lanka, Pradyumna</creatorcontrib><creatorcontrib>Rangaprakash, D</creatorcontrib><creatorcontrib>Dretsch, Michael N.</creatorcontrib><creatorcontrib>Katz, Jeffrey S.</creatorcontrib><creatorcontrib>Denney, Thomas S.</creatorcontrib><creatorcontrib>Deshpande, Gopikrishna</creatorcontrib><title>Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder ( N  = 988), Attention deficit hyperactivity disorder ( N  = 930), Post-traumatic stress disorder ( N  = 87) and Alzheimer’s disease ( N  = 132). We applied 18 different machine learning classifiers (based on diverse principles) wherein the training/validation and the hold-out test data belonged to samples with the same diagnosis but differing in either the age range or the acquisition site. Our results indicate that overfitting can be a huge problem in heterogeneous datasets, especially with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the general clinical population. Further, different classifiers tended to perform well on different datasets. In order to address this, we propose a consensus-classifier by combining the predictive power of all 18 classifiers. The consensus-classifier was less sensitive to unmatched training/validation and holdout test data. Finally, we combined feature importance scores obtained from all classifiers to infer the discriminative ability of connectivity features. The functional connectivity patterns thus identified were robust to the classification algorithm used, age and acquisition site differences, and had diagnostic predictive ability in addition to univariate statistically significant group differences between the groups. A MATLAB toolbox called Machine Learning in NeuroImaging (MALINI), which implements all the 18 different classifiers along with the consensus classifier is available from Lanka et al. ( 2019 ) The toolbox can also be found at the following URL: https://github.com/pradlanka/malini .</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Autism</subject><subject>Autism Spectrum Disorder - diagnostic imaging</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Diagnostic systems</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Post traumatic stress disorder</subject><subject>Psychiatry</subject><subject>Psychological stress</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Supervised Machine Learning</subject><subject>Training</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1TAQhS0EoqXwB1igSGzYBDx-e4OEqvKQKrEA1sZ1JqmrxL7YSSX-Pb7ccnks2HgszXfOzOgQ8hToS6BUv6oAyrCegu1pe6A398gpWA69lkreP_6lPiGPar2hVApj4SE54aBsE9NT8vXTtsNyGysO3eLDdUzYzehLimnqxly6Ifop5brG0IXZ1xrHGPwac-rGkpdu9mXCvgY_Y5dwKzkuftprB7_6imt9TB6Mfq745K6ekS9vLz6fv-8vP777cP7msg9Ci7W3xlJq6CA9jFZxhkrBYJACFVpqL0ZhvL1ChsGCEkoOUnA-MIuBqtA0_Iy8PvjutqsFh4BpLX52u9IWKt9d9tH93Unx2k351mmwhkvWDF7cGZT8bcO6uiXWgPPsE-atOsaBSUkNMw19_g96k7eS2nmOCQ2KG8l0o9iBCiXXWnA8LgPU7QN0hwBdy879DNDtrZ_9ecZR8iuxBvADUFsrTVh-z_6P7Q9eaafh</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lanka, Pradyumna</creator><creator>Rangaprakash, D</creator><creator>Dretsch, Michael N.</creator><creator>Katz, Jeffrey S.</creator><creator>Denney, Thomas S.</creator><creator>Deshpande, Gopikrishna</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5820-5928</orcidid></search><sort><creationdate>20201201</creationdate><title>Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets</title><author>Lanka, Pradyumna ; Rangaprakash, D ; Dretsch, Michael N. ; Katz, Jeffrey S. ; Denney, Thomas S. ; Deshpande, Gopikrishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9890080d5a1f9632e661d8e0104757a4f48a9be2ec916465d5433d29ec06ca1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Autism</topic><topic>Autism Spectrum Disorder - diagnostic imaging</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Diagnostic systems</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Post traumatic stress disorder</topic><topic>Psychiatry</topic><topic>Psychological stress</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Supervised Machine Learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanka, Pradyumna</creatorcontrib><creatorcontrib>Rangaprakash, D</creatorcontrib><creatorcontrib>Dretsch, Michael N.</creatorcontrib><creatorcontrib>Katz, Jeffrey S.</creatorcontrib><creatorcontrib>Denney, Thomas S.</creatorcontrib><creatorcontrib>Deshpande, Gopikrishna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanka, Pradyumna</au><au>Rangaprakash, D</au><au>Dretsch, Michael N.</au><au>Katz, Jeffrey S.</au><au>Denney, Thomas S.</au><au>Deshpande, Gopikrishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>2378</spage><epage>2416</epage><pages>2378-2416</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder ( N  = 988), Attention deficit hyperactivity disorder ( N  = 930), Post-traumatic stress disorder ( N  = 87) and Alzheimer’s disease ( N  = 132). We applied 18 different machine learning classifiers (based on diverse principles) wherein the training/validation and the hold-out test data belonged to samples with the same diagnosis but differing in either the age range or the acquisition site. Our results indicate that overfitting can be a huge problem in heterogeneous datasets, especially with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the general clinical population. Further, different classifiers tended to perform well on different datasets. In order to address this, we propose a consensus-classifier by combining the predictive power of all 18 classifiers. The consensus-classifier was less sensitive to unmatched training/validation and holdout test data. Finally, we combined feature importance scores obtained from all classifiers to infer the discriminative ability of connectivity features. The functional connectivity patterns thus identified were robust to the classification algorithm used, age and acquisition site differences, and had diagnostic predictive ability in addition to univariate statistically significant group differences between the groups. A MATLAB toolbox called Machine Learning in NeuroImaging (MALINI), which implements all the 18 different classifiers along with the consensus classifier is available from Lanka et al. ( 2019 ) The toolbox can also be found at the following URL: https://github.com/pradlanka/malini .</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31691160</pmid><doi>10.1007/s11682-019-00191-8</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-5820-5928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7557
ispartof Brain imaging and behavior, 2020-12, Vol.14 (6), p.2378-2416
issn 1931-7557
1931-7565
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7198352
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Alzheimer's disease
Attention deficit hyperactivity disorder
Autism
Autism Spectrum Disorder - diagnostic imaging
Biomedical and Life Sciences
Biomedicine
Classification
Classifiers
Datasets
Diagnostic systems
Humans
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Medical diagnosis
Medical imaging
Mental disorders
Neural networks
Neurodegenerative diseases
Neuroimaging
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Post traumatic stress disorder
Psychiatry
Psychological stress
Statistical analysis
Statistical methods
Supervised Machine Learning
Training
title Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20machine%20learning%20for%20diagnostic%20classification%20from%20large-scale%20neuroimaging%20datasets&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Lanka,%20Pradyumna&rft.date=2020-12-01&rft.volume=14&rft.issue=6&rft.spage=2378&rft.epage=2416&rft.pages=2378-2416&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-019-00191-8&rft_dat=%3Cproquest_pubme%3E2312550828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471638527&rft_id=info:pmid/31691160&rfr_iscdi=true