A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli
Bacterial specialized metabolites are increasingly recognized as important factors in animal–microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microb...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-04, Vol.117 (17), p.9508-9518 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9518 |
---|---|
container_issue | 17 |
container_start_page | 9508 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Rust, Michael Helfrich, Eric J. N. Freeman, Michael F. Nanudorn, Pakjira Field, Christopher M. Rückert, Christian Kündig, Tomas Page, Michael J. Webb, Victoria L. Kalinowski, Jörn Sunagawa, Shinichi Piel, Jörn |
description | Bacterial specialized metabolites are increasingly recognized as important factors in animal–microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microbiomes. Here, we identified a remarkable case of a moderately complex microbiome in the sponge host Mycale hentscheli in which multiple symbionts jointly generate chemical diversity. In addition to bacterial pathways for three distinct polyketide families comprisingmicrotubule-inhibiting peloruside drug candidates, mycalamide-type contact poisons, and the eukaryotic translation-inhibiting pateamines, we identified extensive biosynthetic potential distributed among a broad phylogenetic range of bacteria. Biochemical data on one of the orphan pathways suggest a previously unknown member of the rare polytheonamide-type cytotoxin family as its product. Other than supporting a scenario of cooperative symbiosis based on bacterial metabolites, the data provide a rationale for the chemical variability of M. hentscheli and could pave the way toward biotechnological peloruside production. Most bacterial lineages in the compositionally unusual sponge microbiome were not known to synthesize bioactive metabolites, supporting the concept that microbial dark matter harbors diverse producer taxa with as yet unrecognized drug discovery potential. |
doi_str_mv | 10.1073/pnas.1919245117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7196800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929958</jstor_id><sourcerecordid>26929958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5f666f19e3cad9a6e63e48d4030589c71cd4cc334ed83f499fd7b7d28957489d3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtP6KY1-QqoovqaiXcsXy2pNdrxI72Eml_e_r1ZaFchpp5jdPb-Yh9JaSC0o6fjlFWy6oppqJltLuGVpRomkjhSbP0YoQ1jVKMHGGXpWyI4ToVpGX6IwzpikX7Qr9usLjMsxhyskvDjIeg8tpHdIIeAMRsp2hYLeF2rcD9uEecgnzHoeI5y3g0eYQAZcpxQ3gH_sKAd5CnEvdGcJr9KK3Q4E3j_Uc_fzy-e76W3Nz-_X79dVN44Tgc9P2UsqeauDOem0lSA5CeUE4aZV2HXVeOMe5AK94L7TufbfuPFO67YTSnp-jT0fdaVmP4F01kO1gphyqwb1JNpinkxi2ZpPuTUe1VIRUgY-PAjn9XqDMZgzFwTDYCGkphnFNaCu54BX98B-6S0uO9bwDpWTLBTtQl0eqvrOUDP3JDCXmkJ05ZGf-Zlc33v97w4n_E1YF3h2BXZlTPs2Z1EzXYPkDRNug4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398653423</pqid></control><display><type>article</type><title>A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rust, Michael ; Helfrich, Eric J. N. ; Freeman, Michael F. ; Nanudorn, Pakjira ; Field, Christopher M. ; Rückert, Christian ; Kündig, Tomas ; Page, Michael J. ; Webb, Victoria L. ; Kalinowski, Jörn ; Sunagawa, Shinichi ; Piel, Jörn</creator><creatorcontrib>Rust, Michael ; Helfrich, Eric J. N. ; Freeman, Michael F. ; Nanudorn, Pakjira ; Field, Christopher M. ; Rückert, Christian ; Kündig, Tomas ; Page, Michael J. ; Webb, Victoria L. ; Kalinowski, Jörn ; Sunagawa, Shinichi ; Piel, Jörn</creatorcontrib><description>Bacterial specialized metabolites are increasingly recognized as important factors in animal–microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microbiomes. Here, we identified a remarkable case of a moderately complex microbiome in the sponge host Mycale hentscheli in which multiple symbionts jointly generate chemical diversity. In addition to bacterial pathways for three distinct polyketide families comprisingmicrotubule-inhibiting peloruside drug candidates, mycalamide-type contact poisons, and the eukaryotic translation-inhibiting pateamines, we identified extensive biosynthetic potential distributed among a broad phylogenetic range of bacteria. Biochemical data on one of the orphan pathways suggest a previously unknown member of the rare polytheonamide-type cytotoxin family as its product. Other than supporting a scenario of cooperative symbiosis based on bacterial metabolites, the data provide a rationale for the chemical variability of M. hentscheli and could pave the way toward biotechnological peloruside production. Most bacterial lineages in the compositionally unusual sponge microbiome were not known to synthesize bioactive metabolites, supporting the concept that microbial dark matter harbors diverse producer taxa with as yet unrecognized drug discovery potential.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1919245117</identifier><identifier>PMID: 32291345</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bioactive compounds ; Biological Sciences ; Chemical defense ; Dark matter ; Drug development ; Metabolites ; Microbiomes ; Microorganisms ; Mycale hentscheli ; Phylogeny ; Physical Sciences ; Poisons ; Symbionts ; Symbiosis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-04, Vol.117 (17), p.9508-9518</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 28, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5f666f19e3cad9a6e63e48d4030589c71cd4cc334ed83f499fd7b7d28957489d3</citedby><cites>FETCH-LOGICAL-c443t-5f666f19e3cad9a6e63e48d4030589c71cd4cc334ed83f499fd7b7d28957489d3</cites><orcidid>0000-0001-8751-3279 ; 0000-0003-3065-0314 ; 0000-0002-0491-9618 ; 0000-0002-6434-3745 ; 0000-0003-3808-5719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929958$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929958$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32291345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rust, Michael</creatorcontrib><creatorcontrib>Helfrich, Eric J. N.</creatorcontrib><creatorcontrib>Freeman, Michael F.</creatorcontrib><creatorcontrib>Nanudorn, Pakjira</creatorcontrib><creatorcontrib>Field, Christopher M.</creatorcontrib><creatorcontrib>Rückert, Christian</creatorcontrib><creatorcontrib>Kündig, Tomas</creatorcontrib><creatorcontrib>Page, Michael J.</creatorcontrib><creatorcontrib>Webb, Victoria L.</creatorcontrib><creatorcontrib>Kalinowski, Jörn</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Piel, Jörn</creatorcontrib><title>A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial specialized metabolites are increasingly recognized as important factors in animal–microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microbiomes. Here, we identified a remarkable case of a moderately complex microbiome in the sponge host Mycale hentscheli in which multiple symbionts jointly generate chemical diversity. In addition to bacterial pathways for three distinct polyketide families comprisingmicrotubule-inhibiting peloruside drug candidates, mycalamide-type contact poisons, and the eukaryotic translation-inhibiting pateamines, we identified extensive biosynthetic potential distributed among a broad phylogenetic range of bacteria. Biochemical data on one of the orphan pathways suggest a previously unknown member of the rare polytheonamide-type cytotoxin family as its product. Other than supporting a scenario of cooperative symbiosis based on bacterial metabolites, the data provide a rationale for the chemical variability of M. hentscheli and could pave the way toward biotechnological peloruside production. Most bacterial lineages in the compositionally unusual sponge microbiome were not known to synthesize bioactive metabolites, supporting the concept that microbial dark matter harbors diverse producer taxa with as yet unrecognized drug discovery potential.</description><subject>Bacteria</subject><subject>Bioactive compounds</subject><subject>Biological Sciences</subject><subject>Chemical defense</subject><subject>Dark matter</subject><subject>Drug development</subject><subject>Metabolites</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Mycale hentscheli</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Poisons</subject><subject>Symbionts</subject><subject>Symbiosis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtP6KY1-QqoovqaiXcsXy2pNdrxI72Eml_e_r1ZaFchpp5jdPb-Yh9JaSC0o6fjlFWy6oppqJltLuGVpRomkjhSbP0YoQ1jVKMHGGXpWyI4ToVpGX6IwzpikX7Qr9usLjMsxhyskvDjIeg8tpHdIIeAMRsp2hYLeF2rcD9uEecgnzHoeI5y3g0eYQAZcpxQ3gH_sKAd5CnEvdGcJr9KK3Q4E3j_Uc_fzy-e76W3Nz-_X79dVN44Tgc9P2UsqeauDOem0lSA5CeUE4aZV2HXVeOMe5AK94L7TufbfuPFO67YTSnp-jT0fdaVmP4F01kO1gphyqwb1JNpinkxi2ZpPuTUe1VIRUgY-PAjn9XqDMZgzFwTDYCGkphnFNaCu54BX98B-6S0uO9bwDpWTLBTtQl0eqvrOUDP3JDCXmkJ05ZGf-Zlc33v97w4n_E1YF3h2BXZlTPs2Z1EzXYPkDRNug4g</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Rust, Michael</creator><creator>Helfrich, Eric J. N.</creator><creator>Freeman, Michael F.</creator><creator>Nanudorn, Pakjira</creator><creator>Field, Christopher M.</creator><creator>Rückert, Christian</creator><creator>Kündig, Tomas</creator><creator>Page, Michael J.</creator><creator>Webb, Victoria L.</creator><creator>Kalinowski, Jörn</creator><creator>Sunagawa, Shinichi</creator><creator>Piel, Jörn</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8751-3279</orcidid><orcidid>https://orcid.org/0000-0003-3065-0314</orcidid><orcidid>https://orcid.org/0000-0002-0491-9618</orcidid><orcidid>https://orcid.org/0000-0002-6434-3745</orcidid><orcidid>https://orcid.org/0000-0003-3808-5719</orcidid></search><sort><creationdate>20200428</creationdate><title>A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli</title><author>Rust, Michael ; Helfrich, Eric J. N. ; Freeman, Michael F. ; Nanudorn, Pakjira ; Field, Christopher M. ; Rückert, Christian ; Kündig, Tomas ; Page, Michael J. ; Webb, Victoria L. ; Kalinowski, Jörn ; Sunagawa, Shinichi ; Piel, Jörn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5f666f19e3cad9a6e63e48d4030589c71cd4cc334ed83f499fd7b7d28957489d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Bioactive compounds</topic><topic>Biological Sciences</topic><topic>Chemical defense</topic><topic>Dark matter</topic><topic>Drug development</topic><topic>Metabolites</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Mycale hentscheli</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Poisons</topic><topic>Symbionts</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rust, Michael</creatorcontrib><creatorcontrib>Helfrich, Eric J. N.</creatorcontrib><creatorcontrib>Freeman, Michael F.</creatorcontrib><creatorcontrib>Nanudorn, Pakjira</creatorcontrib><creatorcontrib>Field, Christopher M.</creatorcontrib><creatorcontrib>Rückert, Christian</creatorcontrib><creatorcontrib>Kündig, Tomas</creatorcontrib><creatorcontrib>Page, Michael J.</creatorcontrib><creatorcontrib>Webb, Victoria L.</creatorcontrib><creatorcontrib>Kalinowski, Jörn</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Piel, Jörn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rust, Michael</au><au>Helfrich, Eric J. N.</au><au>Freeman, Michael F.</au><au>Nanudorn, Pakjira</au><au>Field, Christopher M.</au><au>Rückert, Christian</au><au>Kündig, Tomas</au><au>Page, Michael J.</au><au>Webb, Victoria L.</au><au>Kalinowski, Jörn</au><au>Sunagawa, Shinichi</au><au>Piel, Jörn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-04-28</date><risdate>2020</risdate><volume>117</volume><issue>17</issue><spage>9508</spage><epage>9518</epage><pages>9508-9518</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial specialized metabolites are increasingly recognized as important factors in animal–microbiome interactions: for example, by providing the host with chemical defenses. Even in chemically rich animals, such compounds have been found to originate from individual members of more diverse microbiomes. Here, we identified a remarkable case of a moderately complex microbiome in the sponge host Mycale hentscheli in which multiple symbionts jointly generate chemical diversity. In addition to bacterial pathways for three distinct polyketide families comprisingmicrotubule-inhibiting peloruside drug candidates, mycalamide-type contact poisons, and the eukaryotic translation-inhibiting pateamines, we identified extensive biosynthetic potential distributed among a broad phylogenetic range of bacteria. Biochemical data on one of the orphan pathways suggest a previously unknown member of the rare polytheonamide-type cytotoxin family as its product. Other than supporting a scenario of cooperative symbiosis based on bacterial metabolites, the data provide a rationale for the chemical variability of M. hentscheli and could pave the way toward biotechnological peloruside production. Most bacterial lineages in the compositionally unusual sponge microbiome were not known to synthesize bioactive metabolites, supporting the concept that microbial dark matter harbors diverse producer taxa with as yet unrecognized drug discovery potential.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32291345</pmid><doi>10.1073/pnas.1919245117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8751-3279</orcidid><orcidid>https://orcid.org/0000-0003-3065-0314</orcidid><orcidid>https://orcid.org/0000-0002-0491-9618</orcidid><orcidid>https://orcid.org/0000-0002-6434-3745</orcidid><orcidid>https://orcid.org/0000-0003-3808-5719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-04, Vol.117 (17), p.9508-9518 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7196800 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Bioactive compounds Biological Sciences Chemical defense Dark matter Drug development Metabolites Microbiomes Microorganisms Mycale hentscheli Phylogeny Physical Sciences Poisons Symbionts Symbiosis |
title | A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiproducer%20microbiome%20generates%20chemical%20diversity%20in%20the%20marine%20sponge%20Mycale%20hentscheli&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rust,%20Michael&rft.date=2020-04-28&rft.volume=117&rft.issue=17&rft.spage=9508&rft.epage=9518&rft.pages=9508-9518&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1919245117&rft_dat=%3Cjstor_pubme%3E26929958%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398653423&rft_id=info:pmid/32291345&rft_jstor_id=26929958&rfr_iscdi=true |