AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-05, Vol.295 (18), p.5891-5905
Hauptverfasser: Erikci Ertunc, Meric, Kok, Bernard P., Parsons, William H., Wang, Justin G., Tan, Dan, Donaldson, Cynthia J., Pinto, Antonio F.M., Vaughan, Joan M., Ngo, Nhi, Lum, Kenneth M., Henry, Cassandra L., Coppola, Aundrea R., Niphakis, Micah J., Cravatt, Benjamin F., Saez, Enrique, Saghatelian, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5905
container_issue 18
container_start_page 5891
container_title The Journal of biological chemistry
container_volume 295
creator Erikci Ertunc, Meric
Kok, Bernard P.
Parsons, William H.
Wang, Justin G.
Tan, Dan
Donaldson, Cynthia J.
Pinto, Antonio F.M.
Vaughan, Joan M.
Ngo, Nhi
Lum, Kenneth M.
Henry, Cassandra L.
Coppola, Aundrea R.
Niphakis, Micah J.
Cravatt, Benjamin F.
Saez, Enrique
Saghatelian, Alan
description Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.
doi_str_mv 10.1074/jbc.RA119.012145
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7196635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817482238</els_id><sourcerecordid>2375904239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2cb5246b1e5dd470d291d9b1eec1e99cadae918a84211a86969aaa04caa3eca83</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0Eomnhzgn5WA4bPLb3wxyQVqVpK1UCVUXiZk3sSetqsy72piL_HpOUqhzwZWTPM-945mXsHYg5iFZ_vFu6-VUPYOYCJOj6BZuB6FSlavjxks2EkFAZWXcH7DDnO1GONvCaHSgJtZQKZoz6izPgOHref7m--sYxEafRxxsa4ybz261PccBMmccVX-E0bTm64DnlidLucYf82j5LZn686M8Xff7Aw8jXwdEb9mqFQ6a3j_GIfV-cXp-cV5dfzy5O-svKad1OlXTLWupmCVR7r1vhpQFvypUckDEOPZKBDjstAbBrTGMQUWiHqMhhp47Y573u_Wa5Ju9onBIO9j6FNaatjRjsv5kx3Nqb-GBbME2j6iJw_CiQ4s9NGdKuQ3Y0DDhS2YeVqq2N0FKZgoo96lLMOdHqqQ0I-8cdW9yxO3fs3p1S8v75954K_tpRgE97gMqSHgIlm12g0ZEPidxkfQz_V_8NNoyfZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375904239</pqid></control><display><type>article</type><title>AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Erikci Ertunc, Meric ; Kok, Bernard P. ; Parsons, William H. ; Wang, Justin G. ; Tan, Dan ; Donaldson, Cynthia J. ; Pinto, Antonio F.M. ; Vaughan, Joan M. ; Ngo, Nhi ; Lum, Kenneth M. ; Henry, Cassandra L. ; Coppola, Aundrea R. ; Niphakis, Micah J. ; Cravatt, Benjamin F. ; Saez, Enrique ; Saghatelian, Alan</creator><creatorcontrib>Erikci Ertunc, Meric ; Kok, Bernard P. ; Parsons, William H. ; Wang, Justin G. ; Tan, Dan ; Donaldson, Cynthia J. ; Pinto, Antonio F.M. ; Vaughan, Joan M. ; Ngo, Nhi ; Lum, Kenneth M. ; Henry, Cassandra L. ; Coppola, Aundrea R. ; Niphakis, Micah J. ; Cravatt, Benjamin F. ; Saez, Enrique ; Saghatelian, Alan</creatorcontrib><description>Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.012145</identifier><identifier>PMID: 32152231</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>androgen induced gene 1 (AIG1) ; androgen-dependent TFPI-regulating protein (ADTRP) ; Animals ; diabetes ; enzyme inhibitor ; Esterases - deficiency ; Esterases - genetics ; Esterases - metabolism ; Esters - chemistry ; fatty acid ester of hydroxy fatty acid (FAHFA) ; Fatty Acids - chemistry ; Fatty Acids - metabolism ; Gene Knockout Techniques ; glucose metabolism ; Hydrolysis ; lipid ester ; lipid signaling ; Lipids ; Membrane Proteins - deficiency ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; metabolism ; Mice ; threonine hydrolase</subject><ispartof>The Journal of biological chemistry, 2020-05, Vol.295 (18), p.5891-5905</ispartof><rights>2020 © 2020 Erikci Ertunc et al.</rights><rights>2020 Erikci Ertunc et al.</rights><rights>2020 Erikci Ertunc et al. 2020 Erikci Ertunc et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2cb5246b1e5dd470d291d9b1eec1e99cadae918a84211a86969aaa04caa3eca83</citedby><cites>FETCH-LOGICAL-c447t-2cb5246b1e5dd470d291d9b1eec1e99cadae918a84211a86969aaa04caa3eca83</cites><orcidid>0000-0001-6065-2340 ; 0000-0002-0427-563X ; 0000-0002-0674-4954 ; 0000-0002-1573-8011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196635/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196635/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erikci Ertunc, Meric</creatorcontrib><creatorcontrib>Kok, Bernard P.</creatorcontrib><creatorcontrib>Parsons, William H.</creatorcontrib><creatorcontrib>Wang, Justin G.</creatorcontrib><creatorcontrib>Tan, Dan</creatorcontrib><creatorcontrib>Donaldson, Cynthia J.</creatorcontrib><creatorcontrib>Pinto, Antonio F.M.</creatorcontrib><creatorcontrib>Vaughan, Joan M.</creatorcontrib><creatorcontrib>Ngo, Nhi</creatorcontrib><creatorcontrib>Lum, Kenneth M.</creatorcontrib><creatorcontrib>Henry, Cassandra L.</creatorcontrib><creatorcontrib>Coppola, Aundrea R.</creatorcontrib><creatorcontrib>Niphakis, Micah J.</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><creatorcontrib>Saez, Enrique</creatorcontrib><creatorcontrib>Saghatelian, Alan</creatorcontrib><title>AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.</description><subject>androgen induced gene 1 (AIG1)</subject><subject>androgen-dependent TFPI-regulating protein (ADTRP)</subject><subject>Animals</subject><subject>diabetes</subject><subject>enzyme inhibitor</subject><subject>Esterases - deficiency</subject><subject>Esterases - genetics</subject><subject>Esterases - metabolism</subject><subject>Esters - chemistry</subject><subject>fatty acid ester of hydroxy fatty acid (FAHFA)</subject><subject>Fatty Acids - chemistry</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>glucose metabolism</subject><subject>Hydrolysis</subject><subject>lipid ester</subject><subject>lipid signaling</subject><subject>Lipids</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>threonine hydrolase</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1vEzEQhi0Eomnhzgn5WA4bPLb3wxyQVqVpK1UCVUXiZk3sSetqsy72piL_HpOUqhzwZWTPM-945mXsHYg5iFZ_vFu6-VUPYOYCJOj6BZuB6FSlavjxks2EkFAZWXcH7DDnO1GONvCaHSgJtZQKZoz6izPgOHref7m--sYxEafRxxsa4ybz261PccBMmccVX-E0bTm64DnlidLucYf82j5LZn686M8Xff7Aw8jXwdEb9mqFQ6a3j_GIfV-cXp-cV5dfzy5O-svKad1OlXTLWupmCVR7r1vhpQFvypUckDEOPZKBDjstAbBrTGMQUWiHqMhhp47Y573u_Wa5Ju9onBIO9j6FNaatjRjsv5kx3Nqb-GBbME2j6iJw_CiQ4s9NGdKuQ3Y0DDhS2YeVqq2N0FKZgoo96lLMOdHqqQ0I-8cdW9yxO3fs3p1S8v75954K_tpRgE97gMqSHgIlm12g0ZEPidxkfQz_V_8NNoyfZw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Erikci Ertunc, Meric</creator><creator>Kok, Bernard P.</creator><creator>Parsons, William H.</creator><creator>Wang, Justin G.</creator><creator>Tan, Dan</creator><creator>Donaldson, Cynthia J.</creator><creator>Pinto, Antonio F.M.</creator><creator>Vaughan, Joan M.</creator><creator>Ngo, Nhi</creator><creator>Lum, Kenneth M.</creator><creator>Henry, Cassandra L.</creator><creator>Coppola, Aundrea R.</creator><creator>Niphakis, Micah J.</creator><creator>Cravatt, Benjamin F.</creator><creator>Saez, Enrique</creator><creator>Saghatelian, Alan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6065-2340</orcidid><orcidid>https://orcid.org/0000-0002-0427-563X</orcidid><orcidid>https://orcid.org/0000-0002-0674-4954</orcidid><orcidid>https://orcid.org/0000-0002-1573-8011</orcidid></search><sort><creationdate>20200501</creationdate><title>AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice</title><author>Erikci Ertunc, Meric ; Kok, Bernard P. ; Parsons, William H. ; Wang, Justin G. ; Tan, Dan ; Donaldson, Cynthia J. ; Pinto, Antonio F.M. ; Vaughan, Joan M. ; Ngo, Nhi ; Lum, Kenneth M. ; Henry, Cassandra L. ; Coppola, Aundrea R. ; Niphakis, Micah J. ; Cravatt, Benjamin F. ; Saez, Enrique ; Saghatelian, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2cb5246b1e5dd470d291d9b1eec1e99cadae918a84211a86969aaa04caa3eca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>androgen induced gene 1 (AIG1)</topic><topic>androgen-dependent TFPI-regulating protein (ADTRP)</topic><topic>Animals</topic><topic>diabetes</topic><topic>enzyme inhibitor</topic><topic>Esterases - deficiency</topic><topic>Esterases - genetics</topic><topic>Esterases - metabolism</topic><topic>Esters - chemistry</topic><topic>fatty acid ester of hydroxy fatty acid (FAHFA)</topic><topic>Fatty Acids - chemistry</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>glucose metabolism</topic><topic>Hydrolysis</topic><topic>lipid ester</topic><topic>lipid signaling</topic><topic>Lipids</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>threonine hydrolase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erikci Ertunc, Meric</creatorcontrib><creatorcontrib>Kok, Bernard P.</creatorcontrib><creatorcontrib>Parsons, William H.</creatorcontrib><creatorcontrib>Wang, Justin G.</creatorcontrib><creatorcontrib>Tan, Dan</creatorcontrib><creatorcontrib>Donaldson, Cynthia J.</creatorcontrib><creatorcontrib>Pinto, Antonio F.M.</creatorcontrib><creatorcontrib>Vaughan, Joan M.</creatorcontrib><creatorcontrib>Ngo, Nhi</creatorcontrib><creatorcontrib>Lum, Kenneth M.</creatorcontrib><creatorcontrib>Henry, Cassandra L.</creatorcontrib><creatorcontrib>Coppola, Aundrea R.</creatorcontrib><creatorcontrib>Niphakis, Micah J.</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><creatorcontrib>Saez, Enrique</creatorcontrib><creatorcontrib>Saghatelian, Alan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erikci Ertunc, Meric</au><au>Kok, Bernard P.</au><au>Parsons, William H.</au><au>Wang, Justin G.</au><au>Tan, Dan</au><au>Donaldson, Cynthia J.</au><au>Pinto, Antonio F.M.</au><au>Vaughan, Joan M.</au><au>Ngo, Nhi</au><au>Lum, Kenneth M.</au><au>Henry, Cassandra L.</au><au>Coppola, Aundrea R.</au><au>Niphakis, Micah J.</au><au>Cravatt, Benjamin F.</au><au>Saez, Enrique</au><au>Saghatelian, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>295</volume><issue>18</issue><spage>5891</spage><epage>5905</epage><pages>5891-5905</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32152231</pmid><doi>10.1074/jbc.RA119.012145</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6065-2340</orcidid><orcidid>https://orcid.org/0000-0002-0427-563X</orcidid><orcidid>https://orcid.org/0000-0002-0674-4954</orcidid><orcidid>https://orcid.org/0000-0002-1573-8011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-05, Vol.295 (18), p.5891-5905
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7196635
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects androgen induced gene 1 (AIG1)
androgen-dependent TFPI-regulating protein (ADTRP)
Animals
diabetes
enzyme inhibitor
Esterases - deficiency
Esterases - genetics
Esterases - metabolism
Esters - chemistry
fatty acid ester of hydroxy fatty acid (FAHFA)
Fatty Acids - chemistry
Fatty Acids - metabolism
Gene Knockout Techniques
glucose metabolism
Hydrolysis
lipid ester
lipid signaling
Lipids
Membrane Proteins - deficiency
Membrane Proteins - genetics
Membrane Proteins - metabolism
metabolism
Mice
threonine hydrolase
title AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AIG1%20and%20ADTRP%20are%20endogenous%20hydrolases%20of%20fatty%20acid%20esters%20of%20hydroxy%20fatty%20acids%20(FAHFAs)%20in%20mice&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Erikci%20Ertunc,%20Meric&rft.date=2020-05-01&rft.volume=295&rft.issue=18&rft.spage=5891&rft.epage=5905&rft.pages=5891-5905&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.012145&rft_dat=%3Cproquest_pubme%3E2375904239%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375904239&rft_id=info:pmid/32152231&rft_els_id=S0021925817482238&rfr_iscdi=true