Deep learned tissue “fingerprints” classify breast cancers by ER/PR/Her2 status from H&E images

Because histologic types are subjective and difficult to reproduce between pathologists, tissue morphology often takes a back seat to molecular testing for the selection of breast cancer treatments. This work explores whether a deep-learning algorithm can learn objective histologic H&E features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.7275-7275, Article 7275
Hauptverfasser: Rawat, Rishi R., Ortega, Itzel, Roy, Preeyam, Sha, Fei, Shibata, Darryl, Ruderman, Daniel, Agus, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!