DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images
Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2020-05, Vol.58 (5), p.1031-1045 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1045 |
---|---|
container_issue | 5 |
container_start_page | 1031 |
container_title | Medical & biological engineering & computing |
container_volume | 58 |
creator | Zadeh Shirazi, Amin Fornaciari, Eric Bagherian, Narjes Sadat Ebert, Lisa M. Koszyca, Barbara Gomez, Guillermo A. |
description | Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer.
Graphical abstract
A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right). |
doi_str_mv | 10.1007/s11517-020-02147-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395451700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</originalsourceid><addsrcrecordid>eNp9kU9vVCEUxYmxsdPqF3BhSNy4eZa_hefCpKlWTRpdqGvC4903Q2VgBN4Yd350Gae2tQsXBG7O7x4uHISeUvKSEqJOCqWSqo4w0hYVquMP0IIqQTsihHiIFoSKJlGqD9FRKVekUZKJR-iQM8oEY3KBfr0B2Hye8_Yj1Fd4bAUurfJbG7BLcZvCXH2KrYpQf6T8DU8p4yFbH7Gz0UG-5bOtgF2wpfjJO7vrw4MtMOJ2WPlS08bWVQpp2dSA_douoTxGB5MNBZ5c78fo68XbL-fvu8tP7z6cn112TgpSO81OpXPTCNye9oK6ySqQViuuwMpBOzqwnnGnNGGS95pZOmrhpJaaDEo64Mfo9d53Mw9rGB3Emm0wm9zGyD9Nst78q0S_Msu0NYpqrUjfDF5cG-T0fYZSzdoXByHYCGkuhnFFJCeC0YY-v4depTm3T9xRvRQtNUIaxfaUy6mUDNPNMJSYXcBmH7BpAZs_ARvemp7dfcZNy99EG8D3QGlSXEK-vfs_tr8BenW0TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395451700</pqid></control><display><type>article</type><title>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Zadeh Shirazi, Amin ; Fornaciari, Eric ; Bagherian, Narjes Sadat ; Ebert, Lisa M. ; Koszyca, Barbara ; Gomez, Guillermo A.</creator><creatorcontrib>Zadeh Shirazi, Amin ; Fornaciari, Eric ; Bagherian, Narjes Sadat ; Ebert, Lisa M. ; Koszyca, Barbara ; Gomez, Guillermo A.</creatorcontrib><description>Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer.
Graphical abstract
A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-020-02147-3</identifier><identifier>PMID: 32124225</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Brain ; Brain cancer ; Brain Neoplasms - mortality ; Brain Neoplasms - pathology ; Cancer ; Classification ; Classifiers ; Computer Applications ; Datasets ; Deep Learning ; Genomes ; Histocytochemistry ; Human Physiology ; Humans ; Image classification ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Medical imaging ; Mutation ; Neural networks ; Neural Networks, Computer ; Original ; Original Article ; Patients ; Radiology ; Survival ; Survival Analysis</subject><ispartof>Medical & biological engineering & computing, 2020-05, Vol.58 (5), p.1031-1045</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</citedby><cites>FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</cites><orcidid>0000-0002-0494-2404 ; 0000-0002-1906-9900 ; 0000-0002-8041-9666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-020-02147-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-020-02147-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32124225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zadeh Shirazi, Amin</creatorcontrib><creatorcontrib>Fornaciari, Eric</creatorcontrib><creatorcontrib>Bagherian, Narjes Sadat</creatorcontrib><creatorcontrib>Ebert, Lisa M.</creatorcontrib><creatorcontrib>Koszyca, Barbara</creatorcontrib><creatorcontrib>Gomez, Guillermo A.</creatorcontrib><title>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer.
Graphical abstract
A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - mortality</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Applications</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Genomes</subject><subject>Histocytochemistry</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Medical imaging</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Original</subject><subject>Original Article</subject><subject>Patients</subject><subject>Radiology</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9vVCEUxYmxsdPqF3BhSNy4eZa_hefCpKlWTRpdqGvC4903Q2VgBN4Yd350Gae2tQsXBG7O7x4uHISeUvKSEqJOCqWSqo4w0hYVquMP0IIqQTsihHiIFoSKJlGqD9FRKVekUZKJR-iQM8oEY3KBfr0B2Hye8_Yj1Fd4bAUurfJbG7BLcZvCXH2KrYpQf6T8DU8p4yFbH7Gz0UG-5bOtgF2wpfjJO7vrw4MtMOJ2WPlS08bWVQpp2dSA_douoTxGB5MNBZ5c78fo68XbL-fvu8tP7z6cn112TgpSO81OpXPTCNye9oK6ySqQViuuwMpBOzqwnnGnNGGS95pZOmrhpJaaDEo64Mfo9d53Mw9rGB3Emm0wm9zGyD9Nst78q0S_Msu0NYpqrUjfDF5cG-T0fYZSzdoXByHYCGkuhnFFJCeC0YY-v4depTm3T9xRvRQtNUIaxfaUy6mUDNPNMJSYXcBmH7BpAZs_ARvemp7dfcZNy99EG8D3QGlSXEK-vfs_tr8BenW0TQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zadeh Shirazi, Amin</creator><creator>Fornaciari, Eric</creator><creator>Bagherian, Narjes Sadat</creator><creator>Ebert, Lisa M.</creator><creator>Koszyca, Barbara</creator><creator>Gomez, Guillermo A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0494-2404</orcidid><orcidid>https://orcid.org/0000-0002-1906-9900</orcidid><orcidid>https://orcid.org/0000-0002-8041-9666</orcidid></search><sort><creationdate>20200501</creationdate><title>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</title><author>Zadeh Shirazi, Amin ; Fornaciari, Eric ; Bagherian, Narjes Sadat ; Ebert, Lisa M. ; Koszyca, Barbara ; Gomez, Guillermo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - mortality</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Applications</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Genomes</topic><topic>Histocytochemistry</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Medical imaging</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Original</topic><topic>Original Article</topic><topic>Patients</topic><topic>Radiology</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zadeh Shirazi, Amin</creatorcontrib><creatorcontrib>Fornaciari, Eric</creatorcontrib><creatorcontrib>Bagherian, Narjes Sadat</creatorcontrib><creatorcontrib>Ebert, Lisa M.</creatorcontrib><creatorcontrib>Koszyca, Barbara</creatorcontrib><creatorcontrib>Gomez, Guillermo A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zadeh Shirazi, Amin</au><au>Fornaciari, Eric</au><au>Bagherian, Narjes Sadat</au><au>Ebert, Lisa M.</au><au>Koszyca, Barbara</au><au>Gomez, Guillermo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>58</volume><issue>5</issue><spage>1031</spage><epage>1045</epage><pages>1031-1045</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer.
Graphical abstract
A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32124225</pmid><doi>10.1007/s11517-020-02147-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0494-2404</orcidid><orcidid>https://orcid.org/0000-0002-1906-9900</orcidid><orcidid>https://orcid.org/0000-0002-8041-9666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2020-05, Vol.58 (5), p.1031-1045 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188709 |
source | MEDLINE; SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Artificial intelligence Artificial neural networks Automation Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Brain cancer Brain Neoplasms - mortality Brain Neoplasms - pathology Cancer Classification Classifiers Computer Applications Datasets Deep Learning Genomes Histocytochemistry Human Physiology Humans Image classification Image Interpretation, Computer-Assisted - methods Imaging Medical imaging Mutation Neural networks Neural Networks, Computer Original Original Article Patients Radiology Survival Survival Analysis |
title | DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepSurvNet:%20deep%20survival%20convolutional%20network%20for%20brain%20cancer%20survival%20rate%20classification%20based%20on%20histopathological%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Zadeh%20Shirazi,%20Amin&rft.date=2020-05-01&rft.volume=58&rft.issue=5&rft.spage=1031&rft.epage=1045&rft.pages=1031-1045&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-020-02147-3&rft_dat=%3Cproquest_pubme%3E2395451700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395451700&rft_id=info:pmid/32124225&rfr_iscdi=true |