DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images

Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2020-05, Vol.58 (5), p.1031-1045
Hauptverfasser: Zadeh Shirazi, Amin, Fornaciari, Eric, Bagherian, Narjes Sadat, Ebert, Lisa M., Koszyca, Barbara, Gomez, Guillermo A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1045
container_issue 5
container_start_page 1031
container_title Medical & biological engineering & computing
container_volume 58
creator Zadeh Shirazi, Amin
Fornaciari, Eric
Bagherian, Narjes Sadat
Ebert, Lisa M.
Koszyca, Barbara
Gomez, Guillermo A.
description Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer. Graphical abstract A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).
doi_str_mv 10.1007/s11517-020-02147-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395451700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</originalsourceid><addsrcrecordid>eNp9kU9vVCEUxYmxsdPqF3BhSNy4eZa_hefCpKlWTRpdqGvC4903Q2VgBN4Yd350Gae2tQsXBG7O7x4uHISeUvKSEqJOCqWSqo4w0hYVquMP0IIqQTsihHiIFoSKJlGqD9FRKVekUZKJR-iQM8oEY3KBfr0B2Hye8_Yj1Fd4bAUurfJbG7BLcZvCXH2KrYpQf6T8DU8p4yFbH7Gz0UG-5bOtgF2wpfjJO7vrw4MtMOJ2WPlS08bWVQpp2dSA_douoTxGB5MNBZ5c78fo68XbL-fvu8tP7z6cn112TgpSO81OpXPTCNye9oK6ySqQViuuwMpBOzqwnnGnNGGS95pZOmrhpJaaDEo64Mfo9d53Mw9rGB3Emm0wm9zGyD9Nst78q0S_Msu0NYpqrUjfDF5cG-T0fYZSzdoXByHYCGkuhnFFJCeC0YY-v4depTm3T9xRvRQtNUIaxfaUy6mUDNPNMJSYXcBmH7BpAZs_ARvemp7dfcZNy99EG8D3QGlSXEK-vfs_tr8BenW0TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395451700</pqid></control><display><type>article</type><title>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Zadeh Shirazi, Amin ; Fornaciari, Eric ; Bagherian, Narjes Sadat ; Ebert, Lisa M. ; Koszyca, Barbara ; Gomez, Guillermo A.</creator><creatorcontrib>Zadeh Shirazi, Amin ; Fornaciari, Eric ; Bagherian, Narjes Sadat ; Ebert, Lisa M. ; Koszyca, Barbara ; Gomez, Guillermo A.</creatorcontrib><description>Histopathological whole slide images of haematoxylin and eosin (H&amp;E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, &gt;24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer. Graphical abstract A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&amp;E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-020-02147-3</identifier><identifier>PMID: 32124225</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Brain ; Brain cancer ; Brain Neoplasms - mortality ; Brain Neoplasms - pathology ; Cancer ; Classification ; Classifiers ; Computer Applications ; Datasets ; Deep Learning ; Genomes ; Histocytochemistry ; Human Physiology ; Humans ; Image classification ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Medical imaging ; Mutation ; Neural networks ; Neural Networks, Computer ; Original ; Original Article ; Patients ; Radiology ; Survival ; Survival Analysis</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2020-05, Vol.58 (5), p.1031-1045</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</citedby><cites>FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</cites><orcidid>0000-0002-0494-2404 ; 0000-0002-1906-9900 ; 0000-0002-8041-9666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-020-02147-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-020-02147-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32124225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zadeh Shirazi, Amin</creatorcontrib><creatorcontrib>Fornaciari, Eric</creatorcontrib><creatorcontrib>Bagherian, Narjes Sadat</creatorcontrib><creatorcontrib>Ebert, Lisa M.</creatorcontrib><creatorcontrib>Koszyca, Barbara</creatorcontrib><creatorcontrib>Gomez, Guillermo A.</creatorcontrib><title>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Histopathological whole slide images of haematoxylin and eosin (H&amp;E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, &gt;24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer. Graphical abstract A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&amp;E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - mortality</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Applications</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Genomes</subject><subject>Histocytochemistry</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Medical imaging</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Original</subject><subject>Original Article</subject><subject>Patients</subject><subject>Radiology</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9vVCEUxYmxsdPqF3BhSNy4eZa_hefCpKlWTRpdqGvC4903Q2VgBN4Yd350Gae2tQsXBG7O7x4uHISeUvKSEqJOCqWSqo4w0hYVquMP0IIqQTsihHiIFoSKJlGqD9FRKVekUZKJR-iQM8oEY3KBfr0B2Hye8_Yj1Fd4bAUurfJbG7BLcZvCXH2KrYpQf6T8DU8p4yFbH7Gz0UG-5bOtgF2wpfjJO7vrw4MtMOJ2WPlS08bWVQpp2dSA_douoTxGB5MNBZ5c78fo68XbL-fvu8tP7z6cn112TgpSO81OpXPTCNye9oK6ySqQViuuwMpBOzqwnnGnNGGS95pZOmrhpJaaDEo64Mfo9d53Mw9rGB3Emm0wm9zGyD9Nst78q0S_Msu0NYpqrUjfDF5cG-T0fYZSzdoXByHYCGkuhnFFJCeC0YY-v4depTm3T9xRvRQtNUIaxfaUy6mUDNPNMJSYXcBmH7BpAZs_ARvemp7dfcZNy99EG8D3QGlSXEK-vfs_tr8BenW0TQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zadeh Shirazi, Amin</creator><creator>Fornaciari, Eric</creator><creator>Bagherian, Narjes Sadat</creator><creator>Ebert, Lisa M.</creator><creator>Koszyca, Barbara</creator><creator>Gomez, Guillermo A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0494-2404</orcidid><orcidid>https://orcid.org/0000-0002-1906-9900</orcidid><orcidid>https://orcid.org/0000-0002-8041-9666</orcidid></search><sort><creationdate>20200501</creationdate><title>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</title><author>Zadeh Shirazi, Amin ; Fornaciari, Eric ; Bagherian, Narjes Sadat ; Ebert, Lisa M. ; Koszyca, Barbara ; Gomez, Guillermo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-8265ccfde3a6941cfa7e5a8737ea5b8c1b2923c780253982a1d84c58580b75ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - mortality</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Applications</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Genomes</topic><topic>Histocytochemistry</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Medical imaging</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Original</topic><topic>Original Article</topic><topic>Patients</topic><topic>Radiology</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zadeh Shirazi, Amin</creatorcontrib><creatorcontrib>Fornaciari, Eric</creatorcontrib><creatorcontrib>Bagherian, Narjes Sadat</creatorcontrib><creatorcontrib>Ebert, Lisa M.</creatorcontrib><creatorcontrib>Koszyca, Barbara</creatorcontrib><creatorcontrib>Gomez, Guillermo A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zadeh Shirazi, Amin</au><au>Fornaciari, Eric</au><au>Bagherian, Narjes Sadat</au><au>Ebert, Lisa M.</au><au>Koszyca, Barbara</au><au>Gomez, Guillermo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>58</volume><issue>5</issue><spage>1031</spage><epage>1045</epage><pages>1031-1045</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Histopathological whole slide images of haematoxylin and eosin (H&amp;E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV, &gt;24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer. Graphical abstract A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&amp;E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32124225</pmid><doi>10.1007/s11517-020-02147-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0494-2404</orcidid><orcidid>https://orcid.org/0000-0002-1906-9900</orcidid><orcidid>https://orcid.org/0000-0002-8041-9666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2020-05, Vol.58 (5), p.1031-1045
issn 0140-0118
1741-0444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7188709
source MEDLINE; SpringerNature Journals; EBSCOhost Business Source Complete
subjects Artificial intelligence
Artificial neural networks
Automation
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain
Brain cancer
Brain Neoplasms - mortality
Brain Neoplasms - pathology
Cancer
Classification
Classifiers
Computer Applications
Datasets
Deep Learning
Genomes
Histocytochemistry
Human Physiology
Humans
Image classification
Image Interpretation, Computer-Assisted - methods
Imaging
Medical imaging
Mutation
Neural networks
Neural Networks, Computer
Original
Original Article
Patients
Radiology
Survival
Survival Analysis
title DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepSurvNet:%20deep%20survival%20convolutional%20network%20for%20brain%20cancer%20survival%20rate%20classification%20based%20on%20histopathological%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Zadeh%20Shirazi,%20Amin&rft.date=2020-05-01&rft.volume=58&rft.issue=5&rft.spage=1031&rft.epage=1045&rft.pages=1031-1045&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-020-02147-3&rft_dat=%3Cproquest_pubme%3E2395451700%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395451700&rft_id=info:pmid/32124225&rfr_iscdi=true