Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling
Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐ca...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-04, Vol.59 (18), p.7029-7034 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7034 |
---|---|
container_issue | 18 |
container_start_page | 7029 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Tran, Van T. Li, Zi‐Qi Gallagher, Timothy J. Derosa, Joseph Liu, Peng Engle, Keary M. |
description | Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.
Nickel catalysis enables regioselective 1,2‐allylmethylation of unactivated alkenes in a variety of N‐allyl heterocycles. The resulting alkene product remains untouched and can be easily diversified. |
doi_str_mv | 10.1002/anie.201915454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342355301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-c50a74db4599c8751984bc0461a95f6513af05f205bb1c73b79f7335cf780de93</originalsourceid><addsrcrecordid>eNqFkc1OGzEURq2qCChl2yUaqZtukvo3tjdI0SjQSAg2dG15HE9w6tjBnqEKKx6BZ-RJ6lFoWrrpxrZ0j4_uvR8AnxAcIwjxVx2cHWOIJGKU0XfgGDGMRoRz8r68KSEjLhg6Ah9yXhVeCDg5BEcESSYwxMfgdh46u0y6c2FZTb3f-mrmrelS3Nw5b3PlQhera2d-WP_y9FzrTvvto11UdQyrPpjOPdiqTjHnoRr7jS-ij-Cg1T7b09f7BHy_mN3W30ZXN5fzeno1MgwyOpya00VDmZRGcIakoI2BdIK0ZO2EIaJbyFoMWdMgw0nDZcsJYablAi6sJCfgfOfd9M3aLowNXdJebZJb67RVUTv1thLcnVrGB8WRoJLAIvjyKkjxvre5U2uXjfVeBxv7rDChmDBGICro53_QVexTKOMVSiKBMCa8UOMdZYaVJNvum0FQDYGpITC1D6x8OPt7hD3-O6ECyB3ws8Sx_Y9OTa_nsz_yX0fLpN8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391812237</pqid></control><display><type>article</type><title>Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Tran, Van T. ; Li, Zi‐Qi ; Gallagher, Timothy J. ; Derosa, Joseph ; Liu, Peng ; Engle, Keary M.</creator><creatorcontrib>Tran, Van T. ; Li, Zi‐Qi ; Gallagher, Timothy J. ; Derosa, Joseph ; Liu, Peng ; Engle, Keary M.</creatorcontrib><description>Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.
Nickel catalysis enables regioselective 1,2‐allylmethylation of unactivated alkenes in a variety of N‐allyl heterocycles. The resulting alkene product remains untouched and can be easily diversified.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201915454</identifier><identifier>PMID: 31958202</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkenes - chemistry ; Alkylation ; Alkynes ; Allyl compounds ; Allyl Compounds - chemistry ; allylation ; Catalysis ; Chemical reactions ; conjunctive cross-coupling ; Cross coupling ; dicarbofunctionalization ; Directivity ; heterocycles ; Molecular Structure ; Nickel ; Nickel - chemistry ; nickel catalysis ; Organometallic Compounds - chemistry ; Pyrazoles ; Pyrazoles - chemical synthesis ; Pyrazoles - chemistry ; Pyridones - chemical synthesis ; Pyridones - chemistry ; Saccharin ; Saccharin - chemical synthesis ; Saccharin - chemistry ; Stereoisomerism ; Substrates ; Triazoles ; Triazoles - chemical synthesis ; Triazoles - chemistry</subject><ispartof>Angewandte Chemie International Edition, 2020-04, Vol.59 (18), p.7029-7034</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-c50a74db4599c8751984bc0461a95f6513af05f205bb1c73b79f7335cf780de93</citedby><cites>FETCH-LOGICAL-c5054-c50a74db4599c8751984bc0461a95f6513af05f205bb1c73b79f7335cf780de93</cites><orcidid>0000-0002-8188-632X ; 0000-0001-8672-4875 ; 0000-0003-2767-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201915454$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201915454$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31958202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Van T.</creatorcontrib><creatorcontrib>Li, Zi‐Qi</creatorcontrib><creatorcontrib>Gallagher, Timothy J.</creatorcontrib><creatorcontrib>Derosa, Joseph</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Engle, Keary M.</creatorcontrib><title>Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.
Nickel catalysis enables regioselective 1,2‐allylmethylation of unactivated alkenes in a variety of N‐allyl heterocycles. The resulting alkene product remains untouched and can be easily diversified.</description><subject>Alkenes - chemistry</subject><subject>Alkylation</subject><subject>Alkynes</subject><subject>Allyl compounds</subject><subject>Allyl Compounds - chemistry</subject><subject>allylation</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>conjunctive cross-coupling</subject><subject>Cross coupling</subject><subject>dicarbofunctionalization</subject><subject>Directivity</subject><subject>heterocycles</subject><subject>Molecular Structure</subject><subject>Nickel</subject><subject>Nickel - chemistry</subject><subject>nickel catalysis</subject><subject>Organometallic Compounds - chemistry</subject><subject>Pyrazoles</subject><subject>Pyrazoles - chemical synthesis</subject><subject>Pyrazoles - chemistry</subject><subject>Pyridones - chemical synthesis</subject><subject>Pyridones - chemistry</subject><subject>Saccharin</subject><subject>Saccharin - chemical synthesis</subject><subject>Saccharin - chemistry</subject><subject>Stereoisomerism</subject><subject>Substrates</subject><subject>Triazoles</subject><subject>Triazoles - chemical synthesis</subject><subject>Triazoles - chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1OGzEURq2qCChl2yUaqZtukvo3tjdI0SjQSAg2dG15HE9w6tjBnqEKKx6BZ-RJ6lFoWrrpxrZ0j4_uvR8AnxAcIwjxVx2cHWOIJGKU0XfgGDGMRoRz8r68KSEjLhg6Ah9yXhVeCDg5BEcESSYwxMfgdh46u0y6c2FZTb3f-mrmrelS3Nw5b3PlQhera2d-WP_y9FzrTvvto11UdQyrPpjOPdiqTjHnoRr7jS-ij-Cg1T7b09f7BHy_mN3W30ZXN5fzeno1MgwyOpya00VDmZRGcIakoI2BdIK0ZO2EIaJbyFoMWdMgw0nDZcsJYablAi6sJCfgfOfd9M3aLowNXdJebZJb67RVUTv1thLcnVrGB8WRoJLAIvjyKkjxvre5U2uXjfVeBxv7rDChmDBGICro53_QVexTKOMVSiKBMCa8UOMdZYaVJNvum0FQDYGpITC1D6x8OPt7hD3-O6ECyB3ws8Sx_Y9OTa_nsz_yX0fLpN8</recordid><startdate>20200427</startdate><enddate>20200427</enddate><creator>Tran, Van T.</creator><creator>Li, Zi‐Qi</creator><creator>Gallagher, Timothy J.</creator><creator>Derosa, Joseph</creator><creator>Liu, Peng</creator><creator>Engle, Keary M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8188-632X</orcidid><orcidid>https://orcid.org/0000-0001-8672-4875</orcidid><orcidid>https://orcid.org/0000-0003-2767-6556</orcidid></search><sort><creationdate>20200427</creationdate><title>Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling</title><author>Tran, Van T. ; Li, Zi‐Qi ; Gallagher, Timothy J. ; Derosa, Joseph ; Liu, Peng ; Engle, Keary M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-c50a74db4599c8751984bc0461a95f6513af05f205bb1c73b79f7335cf780de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkenes - chemistry</topic><topic>Alkylation</topic><topic>Alkynes</topic><topic>Allyl compounds</topic><topic>Allyl Compounds - chemistry</topic><topic>allylation</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>conjunctive cross-coupling</topic><topic>Cross coupling</topic><topic>dicarbofunctionalization</topic><topic>Directivity</topic><topic>heterocycles</topic><topic>Molecular Structure</topic><topic>Nickel</topic><topic>Nickel - chemistry</topic><topic>nickel catalysis</topic><topic>Organometallic Compounds - chemistry</topic><topic>Pyrazoles</topic><topic>Pyrazoles - chemical synthesis</topic><topic>Pyrazoles - chemistry</topic><topic>Pyridones - chemical synthesis</topic><topic>Pyridones - chemistry</topic><topic>Saccharin</topic><topic>Saccharin - chemical synthesis</topic><topic>Saccharin - chemistry</topic><topic>Stereoisomerism</topic><topic>Substrates</topic><topic>Triazoles</topic><topic>Triazoles - chemical synthesis</topic><topic>Triazoles - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Van T.</creatorcontrib><creatorcontrib>Li, Zi‐Qi</creatorcontrib><creatorcontrib>Gallagher, Timothy J.</creatorcontrib><creatorcontrib>Derosa, Joseph</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Engle, Keary M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Van T.</au><au>Li, Zi‐Qi</au><au>Gallagher, Timothy J.</au><au>Derosa, Joseph</au><au>Liu, Peng</au><au>Engle, Keary M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-04-27</date><risdate>2020</risdate><volume>59</volume><issue>18</issue><spage>7029</spage><epage>7034</epage><pages>7029-7034</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.
Nickel catalysis enables regioselective 1,2‐allylmethylation of unactivated alkenes in a variety of N‐allyl heterocycles. The resulting alkene product remains untouched and can be easily diversified.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31958202</pmid><doi>10.1002/anie.201915454</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8188-632X</orcidid><orcidid>https://orcid.org/0000-0001-8672-4875</orcidid><orcidid>https://orcid.org/0000-0003-2767-6556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-04, Vol.59 (18), p.7029-7034 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184930 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Alkenes - chemistry Alkylation Alkynes Allyl compounds Allyl Compounds - chemistry allylation Catalysis Chemical reactions conjunctive cross-coupling Cross coupling dicarbofunctionalization Directivity heterocycles Molecular Structure Nickel Nickel - chemistry nickel catalysis Organometallic Compounds - chemistry Pyrazoles Pyrazoles - chemical synthesis Pyrazoles - chemistry Pyridones - chemical synthesis Pyridones - chemistry Saccharin Saccharin - chemical synthesis Saccharin - chemistry Stereoisomerism Substrates Triazoles Triazoles - chemical synthesis Triazoles - chemistry |
title | Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Allyl%20Electrophiles%20into%20Nickel%E2%80%90Catalyzed%20Conjunctive%20Cross%E2%80%90Coupling&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Tran,%20Van%20T.&rft.date=2020-04-27&rft.volume=59&rft.issue=18&rft.spage=7029&rft.epage=7034&rft.pages=7029-7034&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201915454&rft_dat=%3Cproquest_pubme%3E2342355301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391812237&rft_id=info:pmid/31958202&rfr_iscdi=true |